
- •Гипотеза Планка
- •Виды фотоэлектрического эффекта.Законы внешнего фотоэффекта
- •§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •История открытия
- •Внешний фотоэффект
- •Законы внешнего фотоэффекта
- •Теория Фаулера
- •Квантовый выход
- •Внутренний фотоэффект
- •Вентильный фотоэффект
- •Фотовольтаический эффект
- •Ядерный фотоэффект
- •Современные исследования
- •Коэффициент полезного действия
- •Другие похожие показатели
- •Кпд котлов
- •Тепловые насосы и холодильные машины
- •Формулировка
- •[Править] Следствия [править] Недостижимость абсолютного нуля температур
- •[Править] Поведение термодинамических коэффициентов
- •[Править] Нарушения третьего начала термодинамики в моделях
- •Принцип действия тепловой машины. Коэффициент полезного действия тепловых машин
- •[Править]Обратный эффект Комптона
- •Нульмерные дефекты
- •[Править]Термодинамика точечных дефектов
- •[Править]Миграция точечных дефектов
- •[Править]Источники и стоки точечных дефектов
- •Комплексы точечных дефектов
- •Одномерные дефекты
- •Двумерные дефекты]
- •Трёхмерные дефекты
- •Методы избавления от дефектов
- •Полезные дефекты
- •Постулаты Бора
- •§4 Опыты Франка и Герца
- •Спектр атома водорода по Бору
- •Собственная и примесная проводимость полупроводников
- •Физическая природа
- •Применение
- •Основное уравнение мкт
- •Вывод основного уравнения мкт
- •Уравнение среднеквадратичной скорости молекулы
- •Давление газа
- •Состояние физической системы
- •Примеры
- •Обобщённые координаты
- •Примеры
- •Степени свободы в статистической физике и термодинамике
- •Вымораживание степеней свободы
- •Степени свободы молекулы
- •Формулировка
- •Изобарный процесс
- •Изохорный процесс
- •Изотермический процесс
- •Изоэнтропийный процесс
- •1.Статистический и термодинамический методы
- •2.Молекулярно-кинетическая теория идеальных газов
- •2.1.Основные определения
- •2.2.Опытные законы идеального газа
- •2.3.Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева)
- •2.5.Распределение Максвелла
- •2.6.Распределение Больцмана
- •3.Термодинамика
- •3.1.Внутренняя энергия. Закон равномерного распределения энергии по степеням свободы
Основное уравнение мкт
,
где k является постоянной
Больцмана (отношение универсальной
газовой постоянной R к числу
Авогадро NA), i —
число степеней свободы молекул (
в
большинстве задач про идеальные газы,
где молекулы предполагаются сферами
малого радиуса, физическим аналогом
которых могут служить инертные газы),
а T -
абсолютная температура.
Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).
Вывод основного уравнения мкт
Пусть
имеется кубический сосуд с ребром
длиной
и
одна частица массой
в
нём.
Обозначим
скорость движения
,
тогда перед столкновением со стенкой
сосуда импульс частицы
равен
,
а после —
,
поэтому стенке передается импульс
.
Время, через которое частица сталкивается
с одной и той же стенкой, равно
.
Отсюда следует:
Так
как давление
,
следовательно сила
Подставив,
получим:
Преобразовав:
Так
как рассматривается кубический сосуд,
то
Отсюда:
.
Соответственно,
и
.
Таким
образом, для большого числа частиц верно
следующее:
,
аналогично для осей y и z.
Поскольку
,
то
.
Это следует из того, что все направления
движения молекул в
хаотичной среде равновероятны.
Отсюда
или
.
Пусть
—
среднее значение кинетической энергии
всех молекул, тогда:
,
откуда, используя то, что
,
а
,
имеем
.
Уравнение среднеквадратичной скорости молекулы
Уравнение среднеквадратичной скорости молекулы легко выводится из основного уравнения МКТ для одного моля газа.
,
,
где
— молярная
масса газа
Отсюда окончательно
Давление газа
Мякишев Г.Я. Давление газа в сосуде //Квант. — 1987. — № 9. — С. 41-42.
По специальной договоренности с редколлегией и редакцией журнала "Квант"
Зависит ли давление газа на стенку сосуда от материала стенки и ее температуры? Попробуем ответить на этот вопрос.
При выводе основного уравнения молекулярно-кинетической теории идеального газа в учебнике «Физика 9» (§7) предполагается, что стенка абсолютно гладкая и столкновения молекул со стенкой происходят по закону абсолютно упругого удара. Другими словами, кинетическая энергия молекулы при ударе не меняется, и угол падения молекулы равен углу отражения. Является ли это предположение оправданным и необходимым?
Коротко можно сказать так: предположение оправдано, но не необходимо.
На первый взгляд кажется, что считать стенку абсолютно гладкой ни в коем случае нельзя — стенка сама состоит из молекул и, значит, гладкой быть не может. Из-за этого угол падения .не может при любом соударении равняться углу отражения. Кроме того, молекулы стенки совершают хаотические колебания около положений равновесия (участвуют в беспорядочном тепловом движении). Поэтому при столкновении с какой-либо молекулой стенки молекула газа может передать часть энергии стенке или, наоборот, увеличить свою кинетическую энергию за счет стенки.
Тем не менее предположение об абсолютно упругом характере соударения молекулы газа со стенкой оправдано. Дело в том, что при вычислении давления в конечном счете важны средние значения соответствующих величин. При условии теплового равновесия между газом и стенкой сосуда кинетическая энергия молекул газа в среднем остается неизменной, т. е. соударения со стенкой не меняют среднюю энергию молекул газа. Если бы это было не так, то тепловое равновесие самопроизвольно нарушалось бы. А это невозможно согласно второму закону термодинамики. Также не может быть преимущественного отражения молекул в каком-либо определенном направлении — иначе сосуд с газом начал бы двигаться, что противоречит закону сохранения импульса. Значит, среднее число молекул, падающих на стенку под некоторым углом, равно среднему числу молекул, отлетающих от стенки под таким же углом. Предположение о зеркальном отражении от стенки каждой отдельной молекулы соответствует этому условию.
Таким образом, считая соударения молекул газа со стенкой упругими, мы получаем для среднего давления такой же результат, как и без этого предположения. Значит, давление газа не зависит от качества обработки стенки (ее гладкости). Однако предположение об абсолютно упругом характере удара сильно упрощает вычисление давления газа, и поэтому оно оправдано.
А зависит ли давление газа на стенку от ее температуры? На первый взгляд — должно зависеть. Если, например, нет теплового равновесия, то молекулы от холодной стенки должны отскакивать с меньшей энергией, чем от горячей.
Однако, даже если одну стенку поддерживать холодной с помощью холодильной установки, то давление на нее все равно не может быть меньше, чем давление на противоположную горячую стенку. Ведь тогда сосуд начал бы двигаться ускоренно без внешних сил, а это противоречит законам механики: освободив закрепленный сосуд со стенками различной температуры, мы не вызовем его смещения. Дело здесь в том, что при данном неравновесном состоянии газа в сосуде концентрация молекул у холодной стенки больше, чем у горячей. Уменьшение кинетической энергии молекул у холодной стенки компенсируется увеличением концентрации молекул и наоборот. В результате давление на холодную и горячую стенки оказывается одним и тем же.
Рассмотрим еще один вариант опыта. Охладим очень быстро одну из стенок. В первый момент давление на нее уменьшится, и сосуд немного сдвинется с места; затем давления выравняются, и сосуд остановится[1]. Но при этом движении центр масс системы останется на месте из-за того, что плотность газа у холодной стенки станет чуть больше, чем у горячей.
Следует отметить, что на самом деле давление не остается строго фиксированной величиной. Оно испытывает флуктуации, и поэтому сосуд слегка «дрожит» на месте. Но амплитуда дрожания сосуда крайне мала.
Итак, окончательно мы пришли к выводу, что давление газа на стенки в сосуде не зависит ни от качества обработки стенок, ни от их температуры.
Сте́пени свобо́ды — характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания движения механической системы.
Также число степеней свободы равно полному числу независимых уравнений второго порядка (таких, как уравнения Лагранжа) или половине числа уравнений первого порядка (таких, как канонические уравнения Гамильтона), полностью описывающих[1] динамику системы.