
- •Гипотеза Планка
- •Виды фотоэлектрического эффекта.Законы внешнего фотоэффекта
- •§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •История открытия
- •Внешний фотоэффект
- •Законы внешнего фотоэффекта
- •Теория Фаулера
- •Квантовый выход
- •Внутренний фотоэффект
- •Вентильный фотоэффект
- •Фотовольтаический эффект
- •Ядерный фотоэффект
- •Современные исследования
- •Коэффициент полезного действия
- •Другие похожие показатели
- •Кпд котлов
- •Тепловые насосы и холодильные машины
- •Формулировка
- •[Править] Следствия [править] Недостижимость абсолютного нуля температур
- •[Править] Поведение термодинамических коэффициентов
- •[Править] Нарушения третьего начала термодинамики в моделях
- •Принцип действия тепловой машины. Коэффициент полезного действия тепловых машин
- •[Править]Обратный эффект Комптона
- •Нульмерные дефекты
- •[Править]Термодинамика точечных дефектов
- •[Править]Миграция точечных дефектов
- •[Править]Источники и стоки точечных дефектов
- •Комплексы точечных дефектов
- •Одномерные дефекты
- •Двумерные дефекты]
- •Трёхмерные дефекты
- •Методы избавления от дефектов
- •Полезные дефекты
- •Постулаты Бора
- •§4 Опыты Франка и Герца
- •Спектр атома водорода по Бору
- •Собственная и примесная проводимость полупроводников
- •Физическая природа
- •Применение
- •Основное уравнение мкт
- •Вывод основного уравнения мкт
- •Уравнение среднеквадратичной скорости молекулы
- •Давление газа
- •Состояние физической системы
- •Примеры
- •Обобщённые координаты
- •Примеры
- •Степени свободы в статистической физике и термодинамике
- •Вымораживание степеней свободы
- •Степени свободы молекулы
- •Формулировка
- •Изобарный процесс
- •Изохорный процесс
- •Изотермический процесс
- •Изоэнтропийный процесс
- •1.Статистический и термодинамический методы
- •2.Молекулярно-кинетическая теория идеальных газов
- •2.1.Основные определения
- •2.2.Опытные законы идеального газа
- •2.3.Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева)
- •2.5.Распределение Максвелла
- •2.6.Распределение Больцмана
- •3.Термодинамика
- •3.1.Внутренняя энергия. Закон равномерного распределения энергии по степеням свободы
Физическая природа
Фотопроводимость свойственна полупроводникам. Электропроводность полупроводников ограничена нехваткой носителей заряда. При поглощении фотона электрон переходит извалентной зоны в зону проводимости. Как следствие образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Оба носителя заряда при приложении к полупроводнику напряжения создают электрический ток.
При возбуждении фотопроводимости в собственном полупроводнике энергия фотона должна превышать ширину запрещенной зоны. В полупроводнике с примесями поглощение фотона может сопровождаться переходом из расположенного в запрещённой зоне уровня, что позволяет увеличить длину волны света, который вызывает фотопроводимость. Это обстоятельство важно для детектирования инфракрасного излучения. Условием высокой фотопроводимости является также большой коэффициент поглощения света, который реализуется в прямозонных полупроводниках.
Применение
Явление фотопроводимости используется в датчиках света, в частности в фоторезисторах. Фотопроводимость важна также для детектирования инфракрасного излучения и применяется, например, в приборах ночного видения. Увеличение проводимости при освещении используется также в ксерографии, при которой электрические заряды стекают с засвеченных мест предварительно наэлектризованой поверхности полупроводникового барабана. Явление фотопроводимости также используется для определения электрических свойств полупроводниковых структур.
Волнова́я
фу́нкция,
или пси-функция
— комплекснозначная
функция,
используемая в квантовой
механике для
описания чистого
состояния системы.
Является коэффициентом разложения вектора
состояния по
базису (обычно координатному):
где
—
координатный базисный вектор, а
—
волновая функция в координатном
представлении.
Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятностинахождения частицы в данной точке конфигурационного пространства в данный момент времени считается равной квадрату абсолютного значенияволновой функции этого состояния в координатном представлении.
Люминесце́нция (от лат. lumen, род. падеж luminis — свет и -escent — суффикс, означающий слабое действие) — нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке.
Первоначально явление люминесценции использовалось при изготовлении светящихся красок и световых составов на основе так называемых фосфóров, для нанесения на шкалы приборов, предназначенных для использования в темноте. Особого внимания в СССР люминесценция не привлекала вплоть до 1948 года, когда советский учёный С. И. Вавилов на сессии Верховного совета предложил начать изготовление экономичных люминесцентных ламп и использовать люминесценцию в анализе химических веществ. В быту явление люминесценции используется чаще всего в люминесцентных лампах «дневного света» и электронно-лучевых трубках кинескопов. На использовании явления люминесценции основано явление усиления света, экспериментально подтверждённое работами В. А. Фабриканта и лежащее в основе научно-технического направления квантовой электроники, конкретно находящее своё применение в усилителях света и генераторах стимулированного излучения (лазерах).
Молекулярная физика и термодинамика — разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно дополняющих друг друга метода: статистический (молекулярно-кинетический) и термодинамический. Первый лежит в основе молекулярной физики, второй — термодинамики.
Молекулярная физика — раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.
Идея об атомном строении вещества высказана древнегреческим философом Демокритом (460—370 до н. э.). Атомистика возрождается вновь лишь в XVII в. и развивается в работах М. В. Ломоносова, взгляды которого на строение вещества и тепловые явления были близки к современным. Строгое развитие молекулярной теории относится к середине XIX в. и связано с работами немецкого физика Р. Клаузиуса (1822—1888), Дж. Максвелла и Л. Больцмана.
Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода. Этот метод основан на том, что свойства макроскопической системы в конечном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энергии и т. д.). Например, температура тела определяется скоростью хаотического движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул.
Термодинамика — раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями. Термодинамика не рассматривает микропроцессы, которые лежат в основе этих превращений. Этимтермодинамический метод отличается от статистического. Термодинамика базируется на двух началах — фундаментальных законах, установленных в результате обобщения опытных данных.
Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинамический метод несколько ограничен: термодинамика ничего не говорит о микроскопическом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различными методами исследования.
Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:
все тела состоят из частиц: атомов, молекул и ионов;
частицы находятся в непрерывном хаотическом движении (тепловом);
частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
Основными доказательствами этих положений считались:
Диффузия
Броуновское движение
Изменение агрегатных состояний вещества
В современной (теоретической) физике термин молекулярно-кинетическая теория уже не используется, хотя он встречается в учебниках по курсу общей физики. В современной физике МКТ заменила кинетическая теория, в русскоязычной литературе — физическая кинетика, и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения.