Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_i_otvety.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
568.48 Кб
Скачать

Законы Стефана-Больцмана и смещения Вина

 

Из закона Кирхгофа (см. (198.1)) следует, что спектральная плотность энергетической светимости черного тела является универсальной функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения.

Австрийский физик И. Стефан (183S-1893), анализируя экспериментальные данные (1879), и Л. Больцман, применяя термодинамический метод (1884), решили эту задачу лишь частично, установив зависимость энергетической светимости Л, от температуры. Согласно закону Стефана - Больцмана,

                                   (199.1)

т. е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры;  - постоянная Стефана - Больцмана: ее экспериментальное значение равно 5,6710-8 Вт/(м2 К4).

Закон Стефана - Больцмана, определяя зависимость Re от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции r,T от длины волны    при различных температурах (рис. 287) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости r,T от  и осью абсцисс, пропорциональна энергетической светимости Reчерного тела и, следовательно, по закону Стефана - Больцмана, четвертой степени температуры.

Немецкий физик В. Вин (1864-1928), опираясь на законы термо- и электродинамики, установил зависимость длины волны max, соответствующей максимуму функции r,T от температуры ТСогласно закону смещения Вина,

                                        (199.2)

т. е. длина волны max, соответствующая максимальному значению спектральной плотности энергетической светимости r,T черного тела, обратно пропорциональна его термодинамической температуре, - постоянная Вина; ее экспериментальное значение равно 2,910-3 мК. Выражение (199.2) потому называют законом смещения Вина, что оно показывает смещение положения максимума функции r,T по мере возрастания' температуры в область коротких длин волн. Закон Вина объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение (например, переход белого каления в красное при остывании металла).

Обратимые и необратимые процессы, пути изменения состояния термодинамической системы. Процесс называют обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым.

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия,теплопроводность, вязкое течение и другое. Для химической реакции применяют понятия термодинамической и кинетической обратимости, которые совпадают только в непосредственной близости к состоянию равновесия. Р-ция А + В  С + D наз. кинетически обратимой или двусторонней, если в данных условиях продукты С и D могут реагировать друг с другом с образованием исходных веществ А и В. При этом скорости прямой и обратной реакций, соотв.     , где  и  -константы скорости, [А], [В], [С], [D]- текущиеконцентрации (активности), с течением времени становятся равными и наступает химическое равновесие, в котором  -константа равновесия, зависящая от температуры. Кинетически необратимыми (односторонними) являются обычно такие реакции, в ходе которых хотя бы один из продуктов удаляется из зоны реакции (выпадает в осадок, улетучивается или выделяется в виде малодиссоциированного соединения), а также реакции, сопровождающиеся выделением большого кол-ва тепла.

На практике нередко встречаются системы, находящиеся в частичном равновесии, т.е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Например, образец закаленной стали обладает пространственной неоднородностью и является системой, неравновесной по отношению к диффузионным процессам, однако в этом образце могут происходить равновесные циклы механической деформации, поскольку времена релаксации диффузии и деформации в твердых телах отличаются на десятки порядков. Следовательно, процессы с относительно большим временем релаксации являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.

Необратимые процессы сопровождаются диссипативными эффектами, сущностью которых является производство (генерирование) энтропии в системе в результате протекания рассматриваемого процесса. Простейшее выражение закона диссипации имеет вид:

где  средняя температура, diS-производство энтропии,   - т. наз. нескомпенсированная теплота Клаузиуса (теплота диссипации).

Обратимые процессы, будучи идеализированными, не сопровождаются диссипативными эффектами. Микроскопическая теория обратимых и необратимых процессов развивается в статистической термодинамике. Системы, в которых протекают необратимые процессы, изучает термодинамика необратимых процессов. 

Черное тело

К концу XIX века ученые, исследуя взаимодействие электромагнитного излучения (в частности, света) с атомами вещества, столкнулись с серьезными проблемами, решить которые удалось только в рамкахквантовой механики, которая, во многом, и зародилась благодаря тому, что эти проблемы возникли. Чтобы понять первую и, пожалуй, самую серьезную из этих проблем, представьте себе большой черный ящик с зеркальной внутренней поверхностью, в одной из стенок которого проделана маленькая дырочка. Луч света, проникающий в ящик через микроскопическое отверстие, навсегда остается внутри, бесконечно отражаясь от стенок. Объект, не отражающий света, а полностью поглощающий его, выглядит черным, поэтому его и принято называть черным телом. (Абсолютно чёрное тело — подобно многим другим концептуальным физическим явлениям — объект чисто гипотетический, хотя, например, полая, равномерно разогревающаяся зеркальная изнутри сфера, свет в которую проникает через единственное крохотное отверстие, является хорошим приближением.)

Вам, однако, наверняка доводилось и в реальности видеть достаточно близкие аналоги черного тела. В очаге, например, случается, что несколько поленьев сложатся практически вплотную, а внутри них выгорит довольно большая полость. Снаружи поленья остаются темными и не светятся, в то время как внутри выгоревшей полости накапливаются жар (инфракрасное излучение) и свет, и, прежде чем вырваться наружу, эти лучи многократно отражаются от стен полости. Если заглянуть в щель между такими поленьями, вы увидите яркое желто-оранжевое высокотемпературное свечение и, оттуда на вас буквально полыхнет жаром. Просто лучи на какое-то время оказались пойманными в ловушку между поленьями подобно тому, как свет полностью улавливается и поглощается вышеописанным черным ящиком.

Модель такого черного ящика помогает нам понять, как ведет себя поглощенный черным телом свет, взаимодействуя с атомами его вещества. Тут важно понять, что свет поглощается атомом, тут же испускается им и поглощается другим атомом, снова испускается и поглощается, и так будет происходить до момента достижения состояния равновесного насыщения. При нагревании черного тела до равновесного состояния интенсивность испускания и поглощения лучей внутри черного тела уравниваются: при поглощении некоего количества света определенной частоты одним атомом другой атом где-то внутри одновременно испускает такое же количество света той же частоты. Таким образом, количество поглощенного света каждой частоты внутри черного тела остается неизменной, хотя поглощают и испускают его разные атомы тела.

До этого момента поведение черного тела остается достаточно понятным. Проблемы в рамках классической физики (под «классической» здесь имеется в виду физика до появления квантовой механики) начались при попытках подсчитать энергию излучения, сохраняемую внутри абсолютно черного тела в равновесном состоянии. И скоро выяснились две вещи:

  • чем выше волновая частота лучей, тем больше их накапливается внутри черного тела (то есть, чем короче длины волн исследуемой части спектра волн излучения, тем больше лучей этой части спектра внутри черного тела предсказывает классическая теория);

  • чем выше частота волны, тем большую энергию она несет и, соответственно, тем больше ее сохраняется внутри черного тела.

По совокупности два этих заключения привели к немыслимому результату: энергия излучения внутри черного тела должна быть бесконечной! Эта злая насмешка над законами классической физики была окрещенаультрафиолетовой катастрофой, поскольку высокочастотное излучение лежит в ультрафиолетовой части спектра.

Порядок удалось восстановить немецкому физику Максу Планку (см. Постоянная Планка) — он показал, что проблема снимается, если допустить, что атомы могут поглощать и излучать свет только порциями и только на определенных частотах. (Позже Альберт Эйнштейн обобщил эту идею, введя понятие фотонов — строго определенных порций светового излучения.) По такой схеме многие частоты излучения, предсказываемые классической физикой, просто не могут существовать внутри черного тела, поскольку атомы не способны ни поглощать, ни испускать их; соответственно, эти частоты выпадают из рассмотрения при расчете равновесного излучения внутри черного тела. Оставив только допустимые частоты, Планк предотвратил ультрафиолетовую катастрофу и направил науку по пути верного понимания устройства мира на субатомном уровне. Кроме того, он рассчитал характерное распределение равновесного излучения черного тела по частотам.

Это распределение получило всемирную известность через многие десятилетия после его публикации самим Планком, когда ученые-космологи выяснили, что открытое ими реликтовое микроволновое излучение (см.Большой взрыв) в точности подчиняется распределению Планка по своим спектральным характеристикам и соответствует излучению абсолютно черного тела при температуре около трех градусов выше абсолютного нуля.

Второе начало термодинамики

Первое начало термодинамики, выражая закон cохранения и превращения энергии, не позволяет уcтановить направление протекания термодинамических процеccов. Кроме того, существует множество процессов, не противоречащих первому началу, в которых энергия сохраняется, а в природе они не осуществляются. Появление второго начала термодинамики прежде всего связано с необходимостью дать ответ на вопрос, какие процессы в природе возможны, а какие нет. Второе начало термодинамики задает направление протекания термодинамических процессов.  Используя понятие энтропии и связанное с ним неравенство Клаузиуса, второе начало термодинамики можно сформулировать какзакон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.  Можно дать более короткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Существенен момент, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя произвольным образом (возрастать, убывать, оставаться постоянной). Кроме того, повторим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах и в замкнутой системе энтропия всегда возрастает.  Формула Больцмана S=k•lnW дает объяснение постулируемое вторым началом термодинамики возрастанию энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Значит, формула Больцмана дает статистическое толкование второго начала термодинамики. Являясь статистическим законом, оно описывает закономерности хаотического движения огромного числа частиц, которые составляющих замкнутую систему.  Дадим еще две формулировки второго начала термодинамики:  1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;  2) по Клаузиусу: невозможен круговой процесс, единственным результатом которо¬го является передача теплоты от менее нагретого тела к более нагретому.  Можно довольно просто доказать эквивалентность формулировок Кельвина и Клаузиуса. Более того, показано, что если в замкнутой системе провести воображаемый процесс, который противоречит второму началу термодинамики в формулировке Клаузиуса, то он сопровождается уменьшением энтропии. Это же доказывает эквивалентность формулировки Клаузиуса (а значит, и Кельвина) и статистической формулировки, по которой энтропия замкнутой системы не может убывать.  В середине XIX в. возникла проблема так называемой тепловой смерти Вселенной. Рассматривая Вселенную как замкнутую систему и применяя к ней второе качало термодинамики, Клаузиус пришел к утверждению, что энтропия Вселенной когда-нибудь достигнет своего максимума. Это означает, что все формы движения со временем должны перейти в тепловую. При этом переход теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной станет одинаковой, т. е. наступит полное тепловое равновесие и все процессы во Вселенной остановятся — наступит тепловая смерть Вселенной. Неправильность вывода о тепловой смерти заключается в том, что не имеет смысла применять второе начало термодинамики к незамкнутым системам, например к такой бесконечно развивающейся и безграничной системе, как Вселенная.  Первые два начала термодинамики дают мало сведений о поведении термодинамических систем при нуле Кельвина. Они дополняютсятретьим началом термодинамики, или теоремой Нернста—Планкаэнтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к нулю Кельвина   Так как энтропия задается с точностью до аддитивной постоянной, то эту постоянную для простоты возьмем равной нулю. При этом отметим, что это произвольное допущение, т.к. энтропия по своей сущности всегда задается с точностью до аддитивной постоянной. Из теоремы Нернста — Планка следует, что теплоемкости Ср и СV при 0 К равны нулю.

Гипотеза Планка

Материал из Википедии — свободной энциклопедии

Гипо́теза Пла́нка — гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию  , пропорциональной частоте ν излучения:

где h или   — коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением — формулу Планка.

Позднее гипотеза Планка была подтверждена экспериментально.

Выдвижение этой гипотезы считается моментом рождения квантовой механики.

Виды фотоэлектрического эффекта.Законы внешнего фотоэффекта

 

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта - явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. Различают фотоэффект внешний, внутренний и вентильный. Внешним фотоэлектрическим эффектом (фотоэффектом) называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация). Фотоэффект обнаружен (1887 г.) Г. Герцем, наблюдавшим усиление процесса разряда при облучении искрового промежутка ультрафиолетовым излучением.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А. Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена

 Два электрода (катод К из исследуемого металла и анод А - в схеме Столетова применялась металлическая сетка) в вакуумной трубке подключены к бата рее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие закономерности, не утратившие своего значения до нашего времени: 1) наиболее эффективное действие оказывает ультрафиолетовое излучение; 2) под действием света вещество теряет только отрицательные заряды; 3) сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Дж. Дж. Томсон в 1898 г. измерил удельный заряд испускаемых под действием света частиц, (по отклонению в электрическом и магнитном полях). Эти измерения показали, что под действием света вырываются электроны.

Внутренний фотоэффект - это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри, тела увеличивается, что приводит к возникновениюфотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению э.д.с.

Вентильный фотоэффект, являющийся разновидностью внутреннего фотоэффекта, - возникновение э.д.с. (фото-э.д.с.) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преобразования солнечной энергии в электрическую.

На рис. 289 приведена экспериментальная установка для исследования вольт-ампер ной характеристики фотоэффекта - зависимости фототока /, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами. Такая зависимость, соответствующая двум различным освещенностям Е, катода (частота света в обоих случаях одинакова), приведена на рис. 290. По мере увеличения U фототок постепенно возрастает, т. е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока Iнас - фототок насыщения - определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода:

где n - число электронов, испускаемых катодом в 1 с.

 

Из вольт-амперной характеристики следует, что при U = 0 фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототек стал равным нулю, необходимо приложить задерживающее напряжение U0. При U = U0 ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

                        (202.1)

т. е., измерив задерживающее напряжение U0, можно определить максимальные значения скорости и кинетической энергии фотоэлектронов.

При изучении вольт-амперных характеристик разнообразных материалов (важна чистота поверхности, поэтому измерения проводятся в вакууме и на свежих поверхностях) при различных частотах падающего на катод излучения и различных энергетических освещенностях катода и обобщения полученных данных были установлены следующие три закона внешнего фотоэффекта.

I. Закон Столетова: при фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности Ее катода).

II.      Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой v.

III.     Для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота v0 света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны в металле возникают вынужденные колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электроны покинули металл; тогда и наблюдается фотоэффект. Кинетическая энергия вырываемого из металла электрона должна была бы зависеть от интенсивности падающего света, так как с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит II закону фотоэффекта. Так как, по волновой теории, энергия, передаваемая электронам, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречит IIIзакону фотоэффекта. Кроме того, волновая теория не смогла объяснить безынерционность фотоэффекта, установленную опытами. Таким образом, фотоэффект необъясним с точки зрения волновой теории света.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]