Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика 2 семестр.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
3.86 Mб
Скачать

Билет № 35.

Гармоническая волна — согласно наиболее общему определению — волна, каждая точка колеблющейся среды или поле в каждой точке пространства совершает гармонические колебания.

Гармонической волной называется линейная монохроматическая волна, распространяющаяся в бесконечной динамической системе. В распределённых системах общий вид волны описывается выражением, являющимся аналитическим решением линейного волнового уравнения

Где — некоторая постоянная амплитуда волнового процесса, определяемая параметрами системы, частотой колебаний и амплитудой возмущающей силы; — круговая частота волнового процесса, — период гармонической волны, — частота; — волновое число, — длина волны, — скорость распространения волны; – начальная фаза волнового процесса, определяемая в гармонической волне закономерностью воздействия внешнего возмущения.

Волновое уравнение в математике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике).

Уравнение любой волны есть решение некоторого дифференциального уравнения, называемого волновым. Найдем общий вид волнового уравнения. Для этого продифференцируем дважды уравнение плоской волны по времени t и всем координатам:

Сложим уравнения:

Подставим значение , и получим: . Учтем, что ,  а окончательно получим для волнового уравнения

Всякая функция, удовлетворяющая уравнению, описывает некоторую волну, причем корень квадратный из величины, обратной коэффициенту при производной по времени ,  есть фазовая скорость волны.

Билет № 36.

Если свойства среды не изменяются под действием возмущений, создаваемых волной, то к ним применим принцип суперпозиции (наложения волн) при распространении в такой среде нескольких волн, каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды равно геометрической сумме смещений частиц.

Сигнал (импульс) можно представить (согласно теореме Фурье) в виде суперпозиции гармонических волн с частотами, заключенными в некотором интервале . Суперпозиция волн, мало отличающихся друг от друга по частоте, называется волновым пакетом или группой волн.

Там, где фазы совпадают, наблюдается усиление амплитуды, где нет – гашение (результат интерференции).

Скорость, с которой перемещается центр пакета (точка с максимальным значением А), называется групповой скоростью u.

Так как  – фазовая скорость , то  – групповая скорость . С такой скоростью перемещается максимум амплитуды. В пределе выражение для групповой скорости:

Билет № 37.

Стоячие волны - волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу волн с одинаковыми амплитудами н частотами.

Для вывода уравнения стоячей волны примем: 1) волны распространяются в среде без затухания; 2) А1 = А2 =А - имеют равные амплитуды; 3) ω1 = ω2= ω - равные частоты; 4)φ10 = φ20 = 0.

Уравнение бегущей волны, распространяющейся вдоль положительного направления оси х (т.е. уравнение падающей волны):  

           (1)

Уравнение бегущей волны, распространяющейся в отрицательном направлении оси х (т.е. уравнение отраженной волны):

          (2)

Сложив (1) и (2) получим уравнение стоячей волны:

 

Особенностью стоячей волны является то, что амплитуда зависит от координаты х. При перемещении от одной точки к другой амплитуда меняется по закону:

Те точки среды, в которых амплитуда стоячей волны максимальна и равна 2А, называются пучностями. Координаты пучностей можно найти из условия, что

Точки, в которых амплитуда стоячей волны минимальна и равна 0, называются узлами. Координата узлов можно найти из условия

Стоячая волна получается в результате интерференции падающей и отраженной волн. На характере отражения сказывается граница раздела двух сред, от которой происходит отражение. Если волна отражается от среды менее плотной, то фаза волны на границе раздела не меняется и на границе раздела двух сред будет пучность. Если волна отражается от более плотной среды, то её фаза изменяет­ся на противоположную, и на границе будет узел.