
- •Курс лекций
- •Т1. Введение
- •1.Общие сведения о дисциплине
- •Выписка из учебного плана специальности
- •2. Методическое обеспечение.
- •Содержание каталога «mazdoc» Рабочие программы курса тоэ
- •Содержание лекций
- •Задачи к практическим занятиям
- •Инструкции к лабораторным работам
- •Программы для расчета электрических цепей
- •Обучающие программы для практических занятий
- •Программы для выполнения расчетной части лабораторных работ
- •Т.2. Физические законы в электротехнике
- •1.Электромагнитное поле
- •2.Электрический ток. 1-й закон Кирхгофа
- •3. Электрическое напряжение . 2-ой закон Кирхгофа
- •4.Энергетический баланс в электрической цепи
- •5.Физические процессы в электрической цепи
- •Т.3. Теоремы и методы расчета сложных резистивных цепей
- •1.Основные определения
- •2.Метод преобразования (свертки) схемы.
- •7)Взаимное преобразование схем с источником напряжения и с источником тока
- •4. Метод законов Кирхгофа
- •4 .Метод контурных токов
- •5. Метод узловых потенциалов
- •6. Метод двух узлов
- •7). Принцип наложения. Метод наложения
- •8). Теорема о взаимности
- •9. Теорема о компенсации.
- •10. Теорема о линейных отношениях.
- •11. Теорема об эквивалентном генераторе
- •1.Переменный ток (напряжение) и характеризующие его величины
- •Активная мощность
- •3. Векторные диаграммы переменных токов и напряжений
- •4. Теоретические основы комплексного метода расчета цепей переменного тока
- •5. Мощность переменного тока
- •6. Переменные ток в однородных идеальных элементах.
- •7. Электрическая цепь с последовательным соединением элементов r, l и c
- •8. Электрическая цепь с параллельным соединением элементов r, l и с
- •9. Активные и реактивные составляющие токов и напряжений
- •10. Передача энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику)
- •11. Компенсация реактивной мощности приемников энергии
- •Т.4. Резонанс в электрических цепях
- •1.Определение резонанса
- •2.Резонанс токов
- •Резонанс в сложных схемах
- •Т.5. Магнитносвязанные электрические цепи
- •1.Общие определения
- •2.Последовательное соединение магнитносвязанных катушек
- •3.Сложная цепь с магнитносвязанными катушками
- •4.Линейный (без сердечника) трансформатор
- •Уравнение дуги окружности в комплексной форме.
- •2. Круговая диаграмма тока и напряжений для элементов последовательной цепи
- •Круговая диаграмма для произвольного тока и напряжения в сложной цепи
- •Т.6. Топологические методы расчета электрических цепей
- •Топологические определения схемы
- •Уравнения Ома и Кирхгофа в матричной форме
- •3. Контурные уравнения в матричной форме
- •4. Узловые уравнения в матричной форме
- •Т.7. Электрические цепи трехфазного тока.
- •1.Трехфазная система
- •2. Способы соединения обмоток трехфазных генераторов
- •5. Способы соединения фаз трехфазных приемников.
- •7.Мощность трехфазной цепи и способы ее измерения
- •8.Вращающееся магнитное поле
- •9.Теоретические основы метода симметричных составляющих
- •Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении
- •Разложим несимметричную систему напряжений ua, ub, uc на симметричные составляющие прямой, обратной и нулевой последовательностей:
- •10. Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих.
- •Фильтры симметричных составляющих
10. Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих.
В результате различного вида коротких замыканий в сложной энергосистеме возникает несимметричный режим. Расчёт токов коротких замыканий в различных точках энергосистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.
В качестве примера рассмотрим определение тока однофазного короткого замыкания на землю в заданной точке простейшей энергосистемы. Символьная схема энергосистемы показана на рис.1. Короткое замыкание фазы А на землю происходит в конце линии электропередачи.
В соответствии с теоремой о компенсации заменим (мысленно) несимметричный участок в точке короткого замыкания несимметричным трехфазным генератором (UA, UB, UC, причем UA =0). Несимметричную систему векторов напряжений разложим (мысленно) на симметричные составляющие UA1, UA2, UA0. Для каждой из симметричных составляющих схема цепи совершенно симметрична и может быть представлена в однофазном виде. Поэтому составляются однофазные схемы для прямой, обратной и нулевой последовательностей (рис. 2а, б, в).
Далее в соответствии с теоремой об эквивалентном генераторе производится свертка расчетных схем для каждой из симметричных составляющих относительно выводов несимметричного участка a-b. В результате свертки получаются простейшие одноконтурные схемы (рис. 3а, б, в):
Для каждой из расчетных схем (рис.3а, б, в) составляются уравнения по 2-му закону Кирхгофа:
(1)
(2)
(3)
В полученной системе уравнений Кирхгофа содержится 6 неизвестных величин (IA1, IA2, IA0, UA1, UA2, UA0) и ее непосредственное решение невозможно. Поэтому система уравнений Кирхгофа дополняется тремя недостающими уравнениями, вытекающими из вида короткого замыкания. В рассматриваемом примере в точке короткого замыкания напряжение фазы А равно нулю (UA = 0), а также токи фаз В и С равны нулю (IB = IC =0). Дополнительные уравнения будут иметь вид:
(4)
(5)
(6)
В результате совместного решения системы из 6-ти уравнений определяются симметричные составляющие токов IA1, IA2, IA0. В рассматриваемом примере решение системы может быть выполнено в следующей последовательности.
1) Вычитаем почленно из уравнения (5) уравнение (6) и получаем:
,
откуда следует, что IA1
= IA2.
2) Складываем почленно уравнение (5) и уравнение (6) и с учетом, что а2 – а = -1, получаем:
,
откуда следует, что IA1
= IA2
= IA0.
Складываем почленно уравнения (1), (2), (3) и с учетом уравнения (4) и равенства IA1 = IA2 = IA0 получаем:
,
откуда следует решение для тока
.
Все действительные токи определяются по методу наложения через соответствующие симметричные составляющие, например, ток короткого замыкания равен току фазы А:
.