
- •Курс лекций
- •Т1. Введение
- •1.Общие сведения о дисциплине
- •Выписка из учебного плана специальности
- •2. Методическое обеспечение.
- •Содержание каталога «mazdoc» Рабочие программы курса тоэ
- •Содержание лекций
- •Задачи к практическим занятиям
- •Инструкции к лабораторным работам
- •Программы для расчета электрических цепей
- •Обучающие программы для практических занятий
- •Программы для выполнения расчетной части лабораторных работ
- •Т.2. Физические законы в электротехнике
- •1.Электромагнитное поле
- •2.Электрический ток. 1-й закон Кирхгофа
- •3. Электрическое напряжение . 2-ой закон Кирхгофа
- •4.Энергетический баланс в электрической цепи
- •5.Физические процессы в электрической цепи
- •Т.3. Теоремы и методы расчета сложных резистивных цепей
- •1.Основные определения
- •2.Метод преобразования (свертки) схемы.
- •7)Взаимное преобразование схем с источником напряжения и с источником тока
- •4. Метод законов Кирхгофа
- •4 .Метод контурных токов
- •5. Метод узловых потенциалов
- •6. Метод двух узлов
- •7). Принцип наложения. Метод наложения
- •8). Теорема о взаимности
- •9. Теорема о компенсации.
- •10. Теорема о линейных отношениях.
- •11. Теорема об эквивалентном генераторе
- •1.Переменный ток (напряжение) и характеризующие его величины
- •Активная мощность
- •3. Векторные диаграммы переменных токов и напряжений
- •4. Теоретические основы комплексного метода расчета цепей переменного тока
- •5. Мощность переменного тока
- •6. Переменные ток в однородных идеальных элементах.
- •7. Электрическая цепь с последовательным соединением элементов r, l и c
- •8. Электрическая цепь с параллельным соединением элементов r, l и с
- •9. Активные и реактивные составляющие токов и напряжений
- •10. Передача энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику)
- •11. Компенсация реактивной мощности приемников энергии
- •Т.4. Резонанс в электрических цепях
- •1.Определение резонанса
- •2.Резонанс токов
- •Резонанс в сложных схемах
- •Т.5. Магнитносвязанные электрические цепи
- •1.Общие определения
- •2.Последовательное соединение магнитносвязанных катушек
- •3.Сложная цепь с магнитносвязанными катушками
- •4.Линейный (без сердечника) трансформатор
- •Уравнение дуги окружности в комплексной форме.
- •2. Круговая диаграмма тока и напряжений для элементов последовательной цепи
- •Круговая диаграмма для произвольного тока и напряжения в сложной цепи
- •Т.6. Топологические методы расчета электрических цепей
- •Топологические определения схемы
- •Уравнения Ома и Кирхгофа в матричной форме
- •3. Контурные уравнения в матричной форме
- •4. Узловые уравнения в матричной форме
- •Т.7. Электрические цепи трехфазного тока.
- •1.Трехфазная система
- •2. Способы соединения обмоток трехфазных генераторов
- •5. Способы соединения фаз трехфазных приемников.
- •7.Мощность трехфазной цепи и способы ее измерения
- •8.Вращающееся магнитное поле
- •9.Теоретические основы метода симметричных составляющих
- •Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении
- •Разложим несимметричную систему напряжений ua, ub, uc на симметричные составляющие прямой, обратной и нулевой последовательностей:
- •10. Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих.
- •Фильтры симметричных составляющих
8.Вращающееся магнитное поле
Одним из важнейших достоинств трехфазной системы является возможность получения с ее помощью кругового вращающегося магнитного поля, которое лежит в основе работы трехфазных машин (генераторов и двигателей).
Д
ля
получения кругового вращающегося
магнитного поля необходимо и достаточно
выполнить два условия. Условие
первое:
необходимо 3p
одинаковых катушки (p
=1, 2, 3,….)
расположить в пространстве так, чтобы
их оси были расположены в одной плоскости
и сдвинуты взаимно на равные углы
∆α=3600/3p.
Условие
второе:
необходимо пропустить по катушкам
равные по амплитуде и сдвинутые во
времени на ∆t=T/3
или ∆ωt
= 3600/3=1200
переменные токи (симметричный
трехфазный ток). При соблюдении указанных
условий в пространстве вокруг катушек
будет создано круговое вращающееся
магнитное поле с постоянной амплитудой
индукции Вmax
вдоль его оси и с постоянной угловой
скоростью вращения ωп.
Рис. 5
На рис. 5 показано пространственное расположение трех (p = 1) одинаковых катушек под равными углами в 1200 согласно первому условию.
По катушкам, по направлению от их начал (A, B, C) к концам (X, Y, Z) протекает симметричный трехфазный ток:
iA = Imsin(t+0),
iB = Imsin(t-1200),
iC = Imsin(t+1200).
Магнитное поле, создаваемое каждой катушкой в отдельности, пропорционально току катушки (B = ki), следовательно магнитные поля отдельных катушек в центре координат образуют симметричную трехфазную систему В(t):
BA = Bmsin(t+0),
BB = Bmsin(t-1200),
BC = Bmsin(t+1200).
Положительные направления магнитных полей каждой катушки (векторов BA, BB, BC) в пространстве определяются по правилу правоходового винта согласно принятым положительным направлениям токов катушек (рис. 5).
Результирующий
вектор индукции магнитного поля B
для любого момента времени может быть
найден путем пространственного сложения
векторов BA,
BB,
BC
отдельных
катушек. Определим значение результирующего
вектора индукции магнитного поля B
для нескольких моментов времени ωt
= 00;
300;
600.
Пространственное сложение векторов
выполним графически (рис. 6а, б, в ).
Результаты расчета сведены в отдельную
таблицу:
t |
BA |
BB |
BC |
B |
|
0 |
0 |
/2Bm |
/2Bm |
3/2Bm |
0 |
30 |
1/2Bm |
-Bm |
1/2Bm |
3/2Bm |
300 |
60 |
/2Bm |
/2Bm |
0 |
3/2Bm |
600 |
Анализ
таблицы показывает, что результирующий
вектор индукции магнитного поля
имеет постоянную амплитуду (Вmax=3/2Bm)
и равномерно вращается в пространстве
в положительную сторону по направлению
катушки А
к катушке В
с угловой скоростью ωп
, равной угловой частоте тока ω.
В общем случае угловая скорость вращения
магнитного поля зависит еще и от числа
катушек:
[рад/с]
или [с-1].
В технике для характеристики вращения магнитного поля пользуются понятием частоты вращения:
[об/мин].
С изменением числа p пространственная картина магнитного поля изменяется: при p=1 магнитное поле имеет два полюса (или одну пару полюсов), при p=2 – четыре полюса (или 2 пары полюсов) и т.д. (рис. 7). По этой причине число p = 1, 2, 3,… называют числом пар полюсов магнитного поля.
Частоту вращения магнитного поля можно изменять плавно изменением частоты питающего тока f, и ступенчато - изменением числа пар полюсов p. В промышленных условиях оба способа регулирования частоты вращения поля являются технически и экономически малоэффективными. При постоянной частоте промышленного тока f=50 Гц шкала синхронных частот вращения магнитного поля в функции числа пар полюсов выглядит следующим образом:
р, пар пол. |
1 |
2 |
3 |
4 |
5 |
6 |
n, об/мин |
3000 |
1500 |
1000 |
750 |
600 |
500 |
Для изменения направления вращения магнитного поля достаточно изменить порядок следования фаз питающего тока или, попросту, поменять местами две любые фазы источника между собой.