
- •Курс лекций
- •Т1. Введение
- •1.Общие сведения о дисциплине
- •Выписка из учебного плана специальности
- •2. Методическое обеспечение.
- •Содержание каталога «mazdoc» Рабочие программы курса тоэ
- •Содержание лекций
- •Задачи к практическим занятиям
- •Инструкции к лабораторным работам
- •Программы для расчета электрических цепей
- •Обучающие программы для практических занятий
- •Программы для выполнения расчетной части лабораторных работ
- •Т.2. Физические законы в электротехнике
- •1.Электромагнитное поле
- •2.Электрический ток. 1-й закон Кирхгофа
- •3. Электрическое напряжение . 2-ой закон Кирхгофа
- •4.Энергетический баланс в электрической цепи
- •5.Физические процессы в электрической цепи
- •Т.3. Теоремы и методы расчета сложных резистивных цепей
- •1.Основные определения
- •2.Метод преобразования (свертки) схемы.
- •7)Взаимное преобразование схем с источником напряжения и с источником тока
- •4. Метод законов Кирхгофа
- •4 .Метод контурных токов
- •5. Метод узловых потенциалов
- •6. Метод двух узлов
- •7). Принцип наложения. Метод наложения
- •8). Теорема о взаимности
- •9. Теорема о компенсации.
- •10. Теорема о линейных отношениях.
- •11. Теорема об эквивалентном генераторе
- •1.Переменный ток (напряжение) и характеризующие его величины
- •Активная мощность
- •3. Векторные диаграммы переменных токов и напряжений
- •4. Теоретические основы комплексного метода расчета цепей переменного тока
- •5. Мощность переменного тока
- •6. Переменные ток в однородных идеальных элементах.
- •7. Электрическая цепь с последовательным соединением элементов r, l и c
- •8. Электрическая цепь с параллельным соединением элементов r, l и с
- •9. Активные и реактивные составляющие токов и напряжений
- •10. Передача энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику)
- •11. Компенсация реактивной мощности приемников энергии
- •Т.4. Резонанс в электрических цепях
- •1.Определение резонанса
- •2.Резонанс токов
- •Резонанс в сложных схемах
- •Т.5. Магнитносвязанные электрические цепи
- •1.Общие определения
- •2.Последовательное соединение магнитносвязанных катушек
- •3.Сложная цепь с магнитносвязанными катушками
- •4.Линейный (без сердечника) трансформатор
- •Уравнение дуги окружности в комплексной форме.
- •2. Круговая диаграмма тока и напряжений для элементов последовательной цепи
- •Круговая диаграмма для произвольного тока и напряжения в сложной цепи
- •Т.6. Топологические методы расчета электрических цепей
- •Топологические определения схемы
- •Уравнения Ома и Кирхгофа в матричной форме
- •3. Контурные уравнения в матричной форме
- •4. Узловые уравнения в матричной форме
- •Т.7. Электрические цепи трехфазного тока.
- •1.Трехфазная система
- •2. Способы соединения обмоток трехфазных генераторов
- •5. Способы соединения фаз трехфазных приемников.
- •7.Мощность трехфазной цепи и способы ее измерения
- •8.Вращающееся магнитное поле
- •9.Теоретические основы метода симметричных составляющих
- •Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении
- •Разложим несимметричную систему напряжений ua, ub, uc на симметричные составляющие прямой, обратной и нулевой последовательностей:
- •10. Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих.
- •Фильтры симметричных составляющих
4 .Метод контурных токов
Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в сочетании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает ‘’свой’’ контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m(n1).
Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 1. Параметры отдельных элементов схемы заданы.
Последовательность (алгоритм) расчета.
1) Задаются (произвольно) положительными направлениями контурных токов в контурах-ячейках схемы(Iк1 , Iк2 , Iк3 ). Контуры-ячейки следует выбирать так, чтобы они не включали в себя ветви с источниками тока. Ветви с источниками тока J образуют свои контуры с заданными токами (J1, J2).
2) Составляются m(n1) уравнений по 2-му закону Кирхгофа для выбранных контуров-ячеек с контурными токами Iк1, Iк2, Iк3. В уравнениях учитываются падения напряжений как от собственного контурного тока, так и от смежных контурных токов.
Ниже приведена система контурных уравнений для схемы рис. 1:
В обобщенной форме система контурных уравнений имеет вид:
Здесь введены следующие обозначения:
R11= R1 +R4; R22 = R2 +R5 и т. д. – собственные сопротивления контуров, равные сумме сопротивлений всех элементов контура;
R12 = R21 = 0 ; R23 = R32 = R5 и т. д. – взаимные сопротивления между двумя смежными контурами, они положительны – если контурные токи в ветви совпадают, и отрицательны – если контурные токи в ветви направлены встречно, всегда отрицательны – если все контурные токи ориентированы одинаково (например, по часовой стрелке), равны нулю – если контуры не имеют общей ветви;
E11 = E1 + J1R4, E22 = E2, E33 = E3 +J2R3 и т. д. – контурные ЭДС, равные алгебраической сумме слагаемых Enn = E + JR от всех источников контура.
Система контурных уравнений в матричной форме:
или
в сокращенно
,
где
матрица контурных сопротивлений,
матрица контурных токов,
матрица контурных ЭДС.
3) Система контурных уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами (SU1), в результате чего определяются неизвестные контурные токи Iк1, Iк2, Iк3.
4) Выбираются положительные направления токов в ветвях исходной схемы (рис. 1) (I1, I2, I3, I4, I5). Токи ветвей определяются по принципу наложения как алгебраические суммы контурных токов, протекающих в данной ветви.
I1 = Iк1 J1; I2 = Iк2; I3 = Iк3 – J2; I4 = Iк1 – Ik3; I5 = Iк2 + Ik3 .
5) При необходимости определяются напряжения на отдельных элементах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и приемников энергии (Pk = Ik2 Rk).