
- •1.1. Развитие элементной базы вс.
- •1.2. Перспективы развития архитектур класса mpp (Massively Parallel Processor).
- •С хематический вид архитектуры с раздельной памятью
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •Использование гиперкуба для реализации параллельных алгоритмов.
- •Решение задачи быстрой сортировки на гиперкубе
- •2.1. Матричные вс с ассоциативной обработкой инф-ции на примере вс pepe.
- •2.2 Супер-эвм фирмы Cray Research.
- •1. Три типа различных регистров:
- •2. Параллельная обработка на нескольких уровнях.
- •3. Организация памяти.
- •2.3 Понятие метакомпьютинга. Способы организации метакомпьютера. Основные решаемые задачи. Примеры использования метакомпьютера для решения сложных задач.
- •3.1Транспьютеры. Практическое применение
- •3.2 Способы распределения задач по процессорам в мультипроцессорных вс.
- •3.3 Реализация фундаментальных вычислительных алгоритмов в линейной сети процессоров.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •4.1 Вс на основе систолических и волновых матриц
- •Волновая матрица.
- •4.2 Возм-ые пути постр-ия высокопроизв-ых вс, отличных от фоннеймановского типа. Понятие семантического разрыва между стр-рой вс и реал-ой прогр-ой.
- •Концепция неограниченного параллелизма. Выявление микро- и макропараллелизма в алгоритмах.
- •5.1 Анализ производ-ти мультипроцессорных вс. Коэффициент ускорения вычислений. Проблемы достижимости линейного роста производительности.
- •5.2 Редукционная машина «Алиса». Пример выполнения фрагмента программы.
- •Параллельная редукция
- •6.1 Развитие новых методов вычислений Японская программа по развитию вычислительной техники:
- •Основной язык: Prolog
- •6.2 Показатели качества функционирования вс. Критерий Гроша. Критерий Минского. Двухпараметрический критерий. Проблемы достижения линейного роста производительности вс.
- •7.1 Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •7.3 Перспективы развития vpp (Vector Parallel Processor)
- •8.1 Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •8.2 Особенности перехода к параллельным вычислениям. Проблемы организации параллельных вычислений.
- •9.1 Сравнительный анализ режимов и алгоритмов обработки информации в вс Сравнительные возможности двух методов организации параллельных вычислений: метод конвейеризации и метод параллелизма.
- •9.2 Принцип вычислений на основе управления потоком данных. Машины потоков данных (мпд). Архитектура. Достоинства и недостатки мпд.
- •Структура машины потоков данных. Данные хранятся в пакетах данных – в активных ячейках памяти. Ба – блок арифметический. Бл – блок логический. В активной памяти находятся пакеты, готовые к выполнению.
- •Функционирование машин потоков данных.
- •Организация сети передачи пакетов в мпд.
- •Достоинства мпд.
- •Недостатки мпд.
- •Обработка структур в мпд.
- •Структура мпд для обработки структур.
- •Структура устройства хранения и обработки.
- •9.3 Реализация фундаментальных вычислительных алгоритмов в матричной сети процессоров.
- •Решение задач линейной алгебры на матричной сети процессоров
- •10.1 Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •10.2 Принцип вычислений на основе управления потоком данных. Машины потоков данных (мпд). Архитектура. Достоинства и недостатки мпд.
- •Данные хранятся в пакетах данных – в активных ячейках памяти. В активной памяти находятся пакеты, готовые к выполнению.
- •10.3 Принцип «разделяй и властвуй» и его использование для повышения эффективности выполнения вычислительных алгоритмов в сетях процессоров
- •11.1 Абстрактная архитектура вс. Основные модули и интерфейсы
- •Арифметический и командный конвейер
- •11.2 Особенности перехода к параллельным вычислениям. Проблемы организации параллельных вычислений.
- •11.3 Современные тесты для оценки производительности вс.
- •12.1 Диаграмма выполнения команды в машине фон Неймана. «Узкие места» при выполнении команды в последовательной вс. Методы устранения «узких» мест.
- •12.2 Редукционная g-машина. Пример выполнения фрагмента программы.
- •1. Три типа различных регистров:
- •2. Параллельная обработка на нескольких уровнях.
- •3. Организация памяти.
- •13.1 Арифметический и командный конвейер.
- •13.2 Организация тэговой памяти и оценка ее эффективности на примере мультипроцессорной вс Эльбрус.
- •Независимость программных средств от обрабатываемых данных. Программные средства реализованы только на логический уровень, поэтому:
- •Разработка высокопроизводительных систем класса мпд на основе ассоциативной памяти.
- •14.1. Способы выбора количества уровней совмещения (ступеней) в командном конвейере.
- •Тип решаемой задачи.
- •Стоимость организации вычислений.
- •14.2 Кластерные проекты (на примере мвс-1000 м). Коммуникационные технологии построения кластеров. Beowulf- кластеры. Beowulf- кластеры. The-hive.
- •14.3Теоретические модели параллельных систем. Ячеечные автоматы Неймана. Пространственная машина Унгера.
- •15.1 Достижения и перспективы развития вычислительной техники.
- •Японская программа по развитию вычислительной техники:
- •Задачи:
- •Существуют трансляторы с полуестетвенных языков
- •15.2 Способы распределения задач по процессорам в мультипроцессорных вс.
- •Организация супер-эвм с общей памятью (на примере hp Superdone). Архитектура ccNuma.
- •16.1 Классификационные схемы архитектур вс (по Флинну, по Энслоу). Достоинства и недостатки каждой из классификаций.
- •Многовходовые
- •Несимметричные(системы с неоднородными процессорами)
- •5.Вс с матричными (векторными) процессорами (Архитектура мрр)
- •16.2 Теоретические модели параллельных систем. Ячеечные автоматы Неймана. Пространственная машина Унгера
- •16.3Организация супер-эвм с общей памятью (на примере hp Superdone). Архитектура ccNuma.
- •17.1Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •17.2 Вычислительные системы с векторной обработкой команд (структура). Диаграмма выполнения операций с векторной обработкой команд.
- •Вычисление параллельного префикса
- •63 Гусеничный алгоритм обработки элементов массива. Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •65 Реализация фундаментальных вычислительных алгоритмов в матричной сети процессоров.
- •Решение задач линейной алгебры на матричной сети процессоров
- •Японская программа по развитию вычислительной техники:
- •Задачи:
- •Существуют трансляторы с полуестетвенных языков
- •2 Пути развития вычислительных систем (вс). Пять японских программ о развитии и внедрении средств вычислительной техники.
- •Использование гиперкуба для реализации параллельных алгоритмов.
- •Решение задачи быстрой сортировки на гиперкубе
- •Использование комбинаторов в редукционном вычислении
- •Процесс вычисления комбинаторного выражения
- •Реализация фундаментальных вычислительных алгоритмов в линейной сети процессоров.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •20.1 Эволюция развития архитектур вс
- •20.2 Принципы векторизации последовательных программ. Критерии оценки векторной архитектуры.
- •2) Стартовое время конвейера.
- •Гусеничный алгоритм обработки элементов массива. Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •21.2 Теоретические модели параллельных систем. Машина Холланда.
- •Решение задач линейной алгебры на систолических массивах.
- •22.2 Реализация принципа «сверхмультиобработки». Статический и динамический способ создания «общего кода».
- •22.3 СуперЭвм фирмы Fujitsu.
- •23.1 Сравнительные возможности двух методов организации параллельных вычислений: метод конвейеризации и метод параллелизма.
- •Факторы, влияющие на снижение производительности в системах с векторной обработкой команд
- •5. Зависимость по управлению
- •Основные технологии параллельного программирования.
- •62 Реализация фундаментальных вычислительных алгоритмов в линейной сети процессоров.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •Вычислительные системы с векторной обработкой команд (структура). Диаграмма выполнения операций с векторной обработкой команд.
5. Зависимость по управлению
Наблюдается в том случае, когда выполнение следующей команды зависит от результата выполнения предыдущей. Общий способ снижения отрицательного влияния этого фактора связан с разработкой опережающих устройств. Для этого используются:
вспомогательные буферы;
хранение нитей выполнения программы с таком виде, который позволяет немедленно загружаться в процессор;
замена векторных команд последовательностью скалярных операторов, которые могут выполняться параллельно;
реализация условных операторов – когда векторная команда как единое целое не может быть выполнена обычным способом.
If xi<0 then zi=xi+yi else zi=xi-yi
Вводятся специальные команды маскирования, для управления ввод. вектор режима Mi=1 Тогда выполняются операции суммирования: W=Y+(M). Вводится отрицательная маска N дополняющая М. V=X-(M); Z=слияние (W,V) (M)
7. Ограничение на локальную память. ЛП находится между главной памятью и конвейером, которой непосредственно производит обработку. ЛП выполняет следующие функции:
согласование скоростей между главной памятью и конвейером;
используется как накопитель результатов промежуточных результатов и как база для создания операционных цепочек;
позволяет располагать результаты в произвольном порядке, что позволит уменьшить время выборки.
Главная
память
Локальная
память
Конвейер
ЛП имеет несколько шин, которые связывают ее с основными устройствами: две шины в конвейер, шина результата, одну или две шины для выбора из главной памяти команд и операндов и шина записи результата в глобальную память.
Для снижения этого недостатка происходит расслоение главной памяти или использование матричного коммутатора для соединения с отдельными блоками.
Локальная память
Ф1
Ф2
Фn
конвейер
RR – локальная память (регистр.память)
SS – локальная память (место в ОП)
1) в состав векторного процессора входят векторные регистры, которые имеют различную разрядность и число
Cray 1 8VR*64 (векторный регистр и его разрядность)
VP 2000
Fusjitsu 8K слов 256VR*32
Cyber 205 64*256p
Основной недостаток регистровой памяти – ограниченная разрядность и число векторных регистров. Достоинство SS в том, что можно организовать V буфер.
8. Ограничения по механизму адресации и пропускной способности памяти.
Для снятия этого ограничения используют:
чередование адресов памяти, как при расслоении
специфичность расположения данных в памяти
а) равнопериодично – период, через который располагаются данные в памяти можно представить как вектор б) в виде подматриц в) случайное
Коэффициент снижения производительности за счет неблагоприятного использования адресации Ксн.пр.=f (длина вектора, шаг хранения)
9. Конфликтный доступ к памяти возник при выборке векторных команд, скалярных и векторных операндов, при записи в память скалярных и векторных команд. Для снятия используется многомодульная и многопортовая память.
Cray X-MP
10. Наличие специализированных арифметических устройств.
В качестве арифметического конвейера используют специализированные арифметические устройства, чтобы время выполнения арифметических операций было минимально. Арифметические конвейеры:
однофункциональные;
многофункциональные.
Недостаток специализированных устройств – неполное их использование при выполнении универсальных программ.
11. Типы организации супер-ЭВМ.
Основные критерии оценки:
сбалансированность – дорогостоящие устройства должны быть полностью использованы
стоимостной критерий – количество затрат, приходящихся на единицу оборудования.
Типы организации арифметических конвейеров:
линейный и нелинейный
однофункциональный (очень дорогие, но простые: Cray, S-810) и многофункциональный (гибкость, возможность перенастройки, низкая стоимость: ASM)
23.3