
- •1.1. Развитие элементной базы вс.
- •1.2. Перспективы развития архитектур класса mpp (Massively Parallel Processor).
- •С хематический вид архитектуры с раздельной памятью
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •Использование гиперкуба для реализации параллельных алгоритмов.
- •Решение задачи быстрой сортировки на гиперкубе
- •2.1. Матричные вс с ассоциативной обработкой инф-ции на примере вс pepe.
- •2.2 Супер-эвм фирмы Cray Research.
- •1. Три типа различных регистров:
- •2. Параллельная обработка на нескольких уровнях.
- •3. Организация памяти.
- •2.3 Понятие метакомпьютинга. Способы организации метакомпьютера. Основные решаемые задачи. Примеры использования метакомпьютера для решения сложных задач.
- •3.1Транспьютеры. Практическое применение
- •3.2 Способы распределения задач по процессорам в мультипроцессорных вс.
- •3.3 Реализация фундаментальных вычислительных алгоритмов в линейной сети процессоров.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •4.1 Вс на основе систолических и волновых матриц
- •Волновая матрица.
- •4.2 Возм-ые пути постр-ия высокопроизв-ых вс, отличных от фоннеймановского типа. Понятие семантического разрыва между стр-рой вс и реал-ой прогр-ой.
- •Концепция неограниченного параллелизма. Выявление микро- и макропараллелизма в алгоритмах.
- •5.1 Анализ производ-ти мультипроцессорных вс. Коэффициент ускорения вычислений. Проблемы достижимости линейного роста производительности.
- •5.2 Редукционная машина «Алиса». Пример выполнения фрагмента программы.
- •Параллельная редукция
- •6.1 Развитие новых методов вычислений Японская программа по развитию вычислительной техники:
- •Основной язык: Prolog
- •6.2 Показатели качества функционирования вс. Критерий Гроша. Критерий Минского. Двухпараметрический критерий. Проблемы достижения линейного роста производительности вс.
- •7.1 Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •7.3 Перспективы развития vpp (Vector Parallel Processor)
- •8.1 Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •8.2 Особенности перехода к параллельным вычислениям. Проблемы организации параллельных вычислений.
- •9.1 Сравнительный анализ режимов и алгоритмов обработки информации в вс Сравнительные возможности двух методов организации параллельных вычислений: метод конвейеризации и метод параллелизма.
- •9.2 Принцип вычислений на основе управления потоком данных. Машины потоков данных (мпд). Архитектура. Достоинства и недостатки мпд.
- •Структура машины потоков данных. Данные хранятся в пакетах данных – в активных ячейках памяти. Ба – блок арифметический. Бл – блок логический. В активной памяти находятся пакеты, готовые к выполнению.
- •Функционирование машин потоков данных.
- •Организация сети передачи пакетов в мпд.
- •Достоинства мпд.
- •Недостатки мпд.
- •Обработка структур в мпд.
- •Структура мпд для обработки структур.
- •Структура устройства хранения и обработки.
- •9.3 Реализация фундаментальных вычислительных алгоритмов в матричной сети процессоров.
- •Решение задач линейной алгебры на матричной сети процессоров
- •10.1 Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •10.2 Принцип вычислений на основе управления потоком данных. Машины потоков данных (мпд). Архитектура. Достоинства и недостатки мпд.
- •Данные хранятся в пакетах данных – в активных ячейках памяти. В активной памяти находятся пакеты, готовые к выполнению.
- •10.3 Принцип «разделяй и властвуй» и его использование для повышения эффективности выполнения вычислительных алгоритмов в сетях процессоров
- •11.1 Абстрактная архитектура вс. Основные модули и интерфейсы
- •Арифметический и командный конвейер
- •11.2 Особенности перехода к параллельным вычислениям. Проблемы организации параллельных вычислений.
- •11.3 Современные тесты для оценки производительности вс.
- •12.1 Диаграмма выполнения команды в машине фон Неймана. «Узкие места» при выполнении команды в последовательной вс. Методы устранения «узких» мест.
- •12.2 Редукционная g-машина. Пример выполнения фрагмента программы.
- •1. Три типа различных регистров:
- •2. Параллельная обработка на нескольких уровнях.
- •3. Организация памяти.
- •13.1 Арифметический и командный конвейер.
- •13.2 Организация тэговой памяти и оценка ее эффективности на примере мультипроцессорной вс Эльбрус.
- •Независимость программных средств от обрабатываемых данных. Программные средства реализованы только на логический уровень, поэтому:
- •Разработка высокопроизводительных систем класса мпд на основе ассоциативной памяти.
- •14.1. Способы выбора количества уровней совмещения (ступеней) в командном конвейере.
- •Тип решаемой задачи.
- •Стоимость организации вычислений.
- •14.2 Кластерные проекты (на примере мвс-1000 м). Коммуникационные технологии построения кластеров. Beowulf- кластеры. Beowulf- кластеры. The-hive.
- •14.3Теоретические модели параллельных систем. Ячеечные автоматы Неймана. Пространственная машина Унгера.
- •15.1 Достижения и перспективы развития вычислительной техники.
- •Японская программа по развитию вычислительной техники:
- •Задачи:
- •Существуют трансляторы с полуестетвенных языков
- •15.2 Способы распределения задач по процессорам в мультипроцессорных вс.
- •Организация супер-эвм с общей памятью (на примере hp Superdone). Архитектура ccNuma.
- •16.1 Классификационные схемы архитектур вс (по Флинну, по Энслоу). Достоинства и недостатки каждой из классификаций.
- •Многовходовые
- •Несимметричные(системы с неоднородными процессорами)
- •5.Вс с матричными (векторными) процессорами (Архитектура мрр)
- •16.2 Теоретические модели параллельных систем. Ячеечные автоматы Неймана. Пространственная машина Унгера
- •16.3Организация супер-эвм с общей памятью (на примере hp Superdone). Архитектура ccNuma.
- •17.1Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •17.2 Вычислительные системы с векторной обработкой команд (структура). Диаграмма выполнения операций с векторной обработкой команд.
- •Вычисление параллельного префикса
- •63 Гусеничный алгоритм обработки элементов массива. Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •65 Реализация фундаментальных вычислительных алгоритмов в матричной сети процессоров.
- •Решение задач линейной алгебры на матричной сети процессоров
- •Японская программа по развитию вычислительной техники:
- •Задачи:
- •Существуют трансляторы с полуестетвенных языков
- •2 Пути развития вычислительных систем (вс). Пять японских программ о развитии и внедрении средств вычислительной техники.
- •Использование гиперкуба для реализации параллельных алгоритмов.
- •Решение задачи быстрой сортировки на гиперкубе
- •Использование комбинаторов в редукционном вычислении
- •Процесс вычисления комбинаторного выражения
- •Реализация фундаментальных вычислительных алгоритмов в линейной сети процессоров.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •20.1 Эволюция развития архитектур вс
- •20.2 Принципы векторизации последовательных программ. Критерии оценки векторной архитектуры.
- •2) Стартовое время конвейера.
- •Гусеничный алгоритм обработки элементов массива. Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •21.2 Теоретические модели параллельных систем. Машина Холланда.
- •Решение задач линейной алгебры на систолических массивах.
- •22.2 Реализация принципа «сверхмультиобработки». Статический и динамический способ создания «общего кода».
- •22.3 СуперЭвм фирмы Fujitsu.
- •23.1 Сравнительные возможности двух методов организации параллельных вычислений: метод конвейеризации и метод параллелизма.
- •Факторы, влияющие на снижение производительности в системах с векторной обработкой команд
- •5. Зависимость по управлению
- •Основные технологии параллельного программирования.
- •62 Реализация фундаментальных вычислительных алгоритмов в линейной сети процессоров.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •Вычислительные системы с векторной обработкой команд (структура). Диаграмма выполнения операций с векторной обработкой команд.
Решение задач линейной алгебры на матричной сети процессоров
Н аиболее эффективно решаются задачи, связанные с обработкой матриц. Пусть дана матрица размерности , требуется вычислить элемент .
Суть алгоритма: элементы матриц А и В продвигаются своим соседям соответственно по строкам и столбцам: а – вправо, b – вниз – и поступают в процессоры нижней правой четверти.
Тогда получим:
1-й шаг. Все процессоры, содержащие элементы первой строки матрицы А, пересылают элементы вправо, а процессоры, содержащие элементы первого столбца В, посылают элементы вниз. В процессоре (*) образуется элемент С1,1.
2 -й шаг. Элементы первой строки А продолжают движение вправо, а элементы первого столбца В – вниз. За время, пропорциональное размерности матрицы, происходит вычисление всех элементов.
По производительности алгоритм в n раз более быстрый, чем обычные вычисления.
П ример 3:
Объединение префиксов на матричной сети процессоров.
Шаг 1 – распределение данных по процессорам.
Шаг 2 – циклический сдвиг вправо во всех строках матрицы процессоров с одновременным вычислением суммы. Глобальные префиксы – в правом столбце.
Шаг 3 – циклический сдвиг в правом столбце.
Шаг 4 – циклический сдвиг влево построчно (для обновления данных).
18.1
Достижения и перспективы развития вычислительной техники.
Направления развития:
Копирование образцов Запада (тупиковый путь). (IBM 360/370 – ЕС 1020-1065 1077)
Оригинальный путь развития (Минск, Урал, Днепр). Недостаток: эти машины несовместимы между собой аппаратно, программно, информационно 3. СуперЭВМ “Эльбрус”. I, II, III,IV очередь – многопроцессорная; использование в военных целях. Е2К – копирует архитектуру “Эльбруса”; превосходит “Merced” по всем характеристикам. Единственный успешный путь, но не подходит для обыденных целей. Микропроцессор Nouro Matrix (отечественная разработка)
Японская программа по развитию вычислительной техники:
1. (начало 70-х) направленная на то, что бы внедрить средства ВТ в как можно большее число заведений, особенно учебных. Стоимость одного часа машинного времени должна быть в 100-1000 раз меньше, чем в США. Следовательно: - можно больше времени уделять изучению ВТ; - повышать уровень подготовки специалистов – главная цель;
2. (конец 70-х) Создание СуперЭВМ, которые будут совместимы с аналогичными СуперЭВМ Европы и США. FACOM-VP 100 (Fujitsu) и Hitac, S.810 (Hitachi) совместимы с ICL (Англия) и IBM (США) (меньшие мощности, чем аналогичные образцы Запада). Сейчас, по тестированию TOP 500 первые 20 мест занимают японские машины.
Цель: использовать те алгоритмы, ПО, которые уже накоплены, т.е. воспользоваться опытом других стран и на этой основе создавать более мощные программы.
(начало 80-х) Создание японской СуперЭВМ в 100 раз большей производительности, чем аналогичные образцы Европы и США (более дешевы, чем аналогичные образцы Европы и США). Цель: завоевать рынок в области создания и использования ЭВМ
Создание ЭВМ 5-го поколения для решения задач, связанных с нечисловой обработкой информации (данные не в числовых функциях, а в символах, нечетких изображениях)
Отличие: машина должна сама найти алгоритм решения, составить программу и в соответствующей форме выдать результат. Основной язык: Prolog. Эта программа не была доведена до конца. Препятствие: необходимость создания огромной базы знаний, которая являлась бы основой для таких систем. Переориентация на создание интеллектуальных систем принятия решений в различных ситуациях.
(начало 90-х) RWCP (Real World Computer Program) Всемирная программа, связанная с разработкой высоких алгоритмов (простота, скорость, расходы памяти), т.е. эти алгоритмы должны быть не избыточными и обладал высокой скоростью.