
- •1.1. Развитие элементной базы вс.
- •1.2. Перспективы развития архитектур класса mpp (Massively Parallel Processor).
- •С хематический вид архитектуры с раздельной памятью
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •Использование гиперкуба для реализации параллельных алгоритмов.
- •Решение задачи быстрой сортировки на гиперкубе
- •2.1. Матричные вс с ассоциативной обработкой инф-ции на примере вс pepe.
- •2.2 Супер-эвм фирмы Cray Research.
- •1. Три типа различных регистров:
- •2. Параллельная обработка на нескольких уровнях.
- •3. Организация памяти.
- •2.3 Понятие метакомпьютинга. Способы организации метакомпьютера. Основные решаемые задачи. Примеры использования метакомпьютера для решения сложных задач.
- •3.1Транспьютеры. Практическое применение
- •3.2 Способы распределения задач по процессорам в мультипроцессорных вс.
- •3.3 Реализация фундаментальных вычислительных алгоритмов в линейной сети процессоров.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •4.1 Вс на основе систолических и волновых матриц
- •Волновая матрица.
- •4.2 Возм-ые пути постр-ия высокопроизв-ых вс, отличных от фоннеймановского типа. Понятие семантического разрыва между стр-рой вс и реал-ой прогр-ой.
- •Концепция неограниченного параллелизма. Выявление микро- и макропараллелизма в алгоритмах.
- •5.1 Анализ производ-ти мультипроцессорных вс. Коэффициент ускорения вычислений. Проблемы достижимости линейного роста производительности.
- •5.2 Редукционная машина «Алиса». Пример выполнения фрагмента программы.
- •Параллельная редукция
- •6.1 Развитие новых методов вычислений Японская программа по развитию вычислительной техники:
- •Основной язык: Prolog
- •6.2 Показатели качества функционирования вс. Критерий Гроша. Критерий Минского. Двухпараметрический критерий. Проблемы достижения линейного роста производительности вс.
- •7.1 Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •7.3 Перспективы развития vpp (Vector Parallel Processor)
- •8.1 Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •8.2 Особенности перехода к параллельным вычислениям. Проблемы организации параллельных вычислений.
- •9.1 Сравнительный анализ режимов и алгоритмов обработки информации в вс Сравнительные возможности двух методов организации параллельных вычислений: метод конвейеризации и метод параллелизма.
- •9.2 Принцип вычислений на основе управления потоком данных. Машины потоков данных (мпд). Архитектура. Достоинства и недостатки мпд.
- •Структура машины потоков данных. Данные хранятся в пакетах данных – в активных ячейках памяти. Ба – блок арифметический. Бл – блок логический. В активной памяти находятся пакеты, готовые к выполнению.
- •Функционирование машин потоков данных.
- •Организация сети передачи пакетов в мпд.
- •Достоинства мпд.
- •Недостатки мпд.
- •Обработка структур в мпд.
- •Структура мпд для обработки структур.
- •Структура устройства хранения и обработки.
- •9.3 Реализация фундаментальных вычислительных алгоритмов в матричной сети процессоров.
- •Решение задач линейной алгебры на матричной сети процессоров
- •10.1 Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •10.2 Принцип вычислений на основе управления потоком данных. Машины потоков данных (мпд). Архитектура. Достоинства и недостатки мпд.
- •Данные хранятся в пакетах данных – в активных ячейках памяти. В активной памяти находятся пакеты, готовые к выполнению.
- •10.3 Принцип «разделяй и властвуй» и его использование для повышения эффективности выполнения вычислительных алгоритмов в сетях процессоров
- •11.1 Абстрактная архитектура вс. Основные модули и интерфейсы
- •Арифметический и командный конвейер
- •11.2 Особенности перехода к параллельным вычислениям. Проблемы организации параллельных вычислений.
- •11.3 Современные тесты для оценки производительности вс.
- •12.1 Диаграмма выполнения команды в машине фон Неймана. «Узкие места» при выполнении команды в последовательной вс. Методы устранения «узких» мест.
- •12.2 Редукционная g-машина. Пример выполнения фрагмента программы.
- •1. Три типа различных регистров:
- •2. Параллельная обработка на нескольких уровнях.
- •3. Организация памяти.
- •13.1 Арифметический и командный конвейер.
- •13.2 Организация тэговой памяти и оценка ее эффективности на примере мультипроцессорной вс Эльбрус.
- •Независимость программных средств от обрабатываемых данных. Программные средства реализованы только на логический уровень, поэтому:
- •Разработка высокопроизводительных систем класса мпд на основе ассоциативной памяти.
- •14.1. Способы выбора количества уровней совмещения (ступеней) в командном конвейере.
- •Тип решаемой задачи.
- •Стоимость организации вычислений.
- •14.2 Кластерные проекты (на примере мвс-1000 м). Коммуникационные технологии построения кластеров. Beowulf- кластеры. Beowulf- кластеры. The-hive.
- •14.3Теоретические модели параллельных систем. Ячеечные автоматы Неймана. Пространственная машина Унгера.
- •15.1 Достижения и перспективы развития вычислительной техники.
- •Японская программа по развитию вычислительной техники:
- •Задачи:
- •Существуют трансляторы с полуестетвенных языков
- •15.2 Способы распределения задач по процессорам в мультипроцессорных вс.
- •Организация супер-эвм с общей памятью (на примере hp Superdone). Архитектура ccNuma.
- •16.1 Классификационные схемы архитектур вс (по Флинну, по Энслоу). Достоинства и недостатки каждой из классификаций.
- •Многовходовые
- •Несимметричные(системы с неоднородными процессорами)
- •5.Вс с матричными (векторными) процессорами (Архитектура мрр)
- •16.2 Теоретические модели параллельных систем. Ячеечные автоматы Неймана. Пространственная машина Унгера
- •16.3Организация супер-эвм с общей памятью (на примере hp Superdone). Архитектура ccNuma.
- •17.1Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •17.2 Вычислительные системы с векторной обработкой команд (структура). Диаграмма выполнения операций с векторной обработкой команд.
- •Вычисление параллельного префикса
- •63 Гусеничный алгоритм обработки элементов массива. Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •65 Реализация фундаментальных вычислительных алгоритмов в матричной сети процессоров.
- •Решение задач линейной алгебры на матричной сети процессоров
- •Японская программа по развитию вычислительной техники:
- •Задачи:
- •Существуют трансляторы с полуестетвенных языков
- •2 Пути развития вычислительных систем (вс). Пять японских программ о развитии и внедрении средств вычислительной техники.
- •Использование гиперкуба для реализации параллельных алгоритмов.
- •Решение задачи быстрой сортировки на гиперкубе
- •Использование комбинаторов в редукционном вычислении
- •Процесс вычисления комбинаторного выражения
- •Реализация фундаментальных вычислительных алгоритмов в линейной сети процессоров.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •20.1 Эволюция развития архитектур вс
- •20.2 Принципы векторизации последовательных программ. Критерии оценки векторной архитектуры.
- •2) Стартовое время конвейера.
- •Гусеничный алгоритм обработки элементов массива. Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •Одномерный путь передачи информации (отсутствует параллелизм передачи информации).
- •21.2 Теоретические модели параллельных систем. Машина Холланда.
- •Решение задач линейной алгебры на систолических массивах.
- •22.2 Реализация принципа «сверхмультиобработки». Статический и динамический способ создания «общего кода».
- •22.3 СуперЭвм фирмы Fujitsu.
- •23.1 Сравнительные возможности двух методов организации параллельных вычислений: метод конвейеризации и метод параллелизма.
- •Факторы, влияющие на снижение производительности в системах с векторной обработкой команд
- •5. Зависимость по управлению
- •Основные технологии параллельного программирования.
- •62 Реализация фундаментальных вычислительных алгоритмов в линейной сети процессоров.
- •Линейная сеть процессоров
- •Повышение эффективности решения задач на линейной сети процессоров
- •Вычисление параллельного префикса
- •Вычислительные системы с векторной обработкой команд (структура). Диаграмма выполнения операций с векторной обработкой команд.
12.1 Диаграмма выполнения команды в машине фон Неймана. «Узкие места» при выполнении команды в последовательной вс. Методы устранения «узких» мест.
Диаграммы выполнения команды в машине Фон Неймана.
Выполнение команды состоит из следующих фаз:
Г
А
ВК ДШ ФАО ВО АЛУ ЗР
ВК – выборка команды ДШ – дешифрация кода команды ФАО – формирование адреса операнда ВО – выборка операнда АЛУ – выполнение операнда в АЛУ ЗР – запись результата ГА – генерация адреса
Диаграмма для случая, когда время обращения к ОП соизмеримо с временем выполнения типовой операции в АЛУ. Это достигается некоторыми приемами, например кэш-памятью. Фазы связанны с обращением в ОП. С уменьшением такта производительность возрастает
Основные особенности машины Фон Неймана, являющиеся ее недостатками:
Линейно-адресуемая память, т.е. все команды программы располагаются последовательно друг за другом в памяти. Альтернатива – списковая память или др.
Команды и данные находящиеся в памяти неразличимы: по коду нельзя определить – команда это или данные.
Единственный тракт передачи информации между ОП и устройствами обработки данных. Скорость передачи информации определяется пропускной способностью шины. Если увеличить количество обрабатывающих устройств (мультипроцессорные системы), то устройства будут конфликтовать за доступ к шине, следовательно уменьшится производительность. Наличие единого тракта – самое “узкое место” при организации вычислений.
Программный принцип управления при котором команды последовательно выполняются друг за другом. Приводит к понижению производительности системы в целом.
Основной показатель качества, по которому происходит усовершенствование архитектуры: отношение производительности системы к стоимости.
При этом ставятся две задачи:
Как решить текущую задачу за наименьший промежуток времени.
Как за заданный промежуток времени решить наибольшее число задач.
Способы повышения эффективности функционирования ОП.
Способы уменьшения времени доступа. 1. Введение кэш-памяти (“Cash - карман”). 2. Расслоение ОП.. 3. Использование адекватного задаче алгоритма распределения памяти.
Увеличение скорости работы АЛУ. Использование сопроцессоров (числовых, логических и др.). Использование перспективных архитектур АЛУ.(RISK – архитектура: компьютер с сокращенным набором команд. Reduces Instruction Set Computer). Наиболее действенные методы – способы совмещения во времени выполнения отдельных операций. Один из наиболее удачных из известных способов – конвейеризация (магистральная обработка информации, pipe line онлайновая обработка информации).
Повышение произ-ти проц-ра за счет совмещения отдельных фаз обработчика команды. Совмещение отдельных фаз связывается с использованием в процессоре конвейера команд.
12.2 Редукционная g-машина. Пример выполнения фрагмента программы.
G – машина, использующая стековое вычисление выражений. *(+53)(-52)
Аргументами функции "*" являются два операнда (О1, О2).
12.3
Супер-ЭВМ фирмы Cray Research.
Сеймур Крей. (нач. 70-х) Cray – 1.
ф. Cray Research.
Основная цель создания:
1) обеспечение высокой производительности (более 1 млрд.);
2) возможность решения за приемлемое время сложных задач, которые нельзя было решить с помощью современных ВС-м.
3) возможность сохранения созданного к тому времени ПО.
Cray имеет векторно- конвейерную архитектуру, т.е. ОКМД (к такой архитектуре относятся матричные и векторные) + конвейеризация.
Векторная обработка дает возможность одновременно выполнять множество операций над своим полем данных, находящихся в локальной памяти.
С хема Cray:
VO–V7 – векторные регистры, каждый из которых содержит 64 регистра по 64разряда каждый; VL – регистр длины вектора; VM – регистр маски; S – набор скалярных регистров; T – промежуточные регистры – буферные регистры между ОП и скалярными регистрами. A – набор адресных регистров; B – промежуточные регистры между ОП и адресными регистрами. (VL и VM) – входят в состав скалярного процессора (подготовка работе, ДШКОП). Конвейерное устройство – до 12 ступеней (для операций с плавающей запятой, с фиксированной запятой, обработки адресов – свои устройства). Такая структура обеспечивает высокий параллелизм при выполнении операций.
Особенности Cray: