
- •1.Достижения и перспективы развития вычислительной техники.
- •Японская программа по развитию вычислительной техники:
- •Задачи:
- •Существуют трансляторы с полуестетвенных языков
- •2.Пути развития вычислительных систем (вс). Пять японских программ о развитии и внедрении средств вычислительной техники.
- •1.Развитие элементной базы
- •2.Развитие архитектуры вычислительных систем
- •3.Развитие новых методов вычислений Японская программа по развитию вычислительной техники:
- •Создание эвм 5-го поколения для решения задач, связанных с нечисловой обработкой информации (данные не в числовых функциях, а в символах, нечетких изображениях)
- •Основной язык: Prolog
- •3.Эволюция развития архитектур вс
- •4.Развитие элементной базы вс.
- •5.Развитие новых методов вычислений в вс.
- •6.Сравнительный анализ режимов и алгоритмов обработки информации в вс Сравнительные возможности двух методов организации параллельных вычислений: метод конвейеризации и метод параллелизма.
- •7.Абстрактная архитектура вс. Основные модули и интерфейсы
- •Арифметический и командный конвейер
- •8.Диаграмма выполнения команды в машине фон Неймана. «Узкие места» при выполнении команды в последовательной вс. Методы устранения «узких» мест.
- •9.Арифметический и командный конвейер.
- •10. Способы выбора количества уровней совмещения (ступеней) в командном конвейере
- •Тип решаемой задачи.
- •Стоимость организации вычислений.
- •11.Классификационные схемы архитектур вс (по Флинну, по Энслоу). Достоинства и недостатки каждой из классификаций.
- •Многовходовые
- •Несимметричные(системы с неоднородными процессорами)
- •5.Вс с матричными (векторными) процессорами (Архитектура мрр)
- •12.Матричные вс с ассоциативной обработкой инф-ции на примере вс pepe.
- •13.Транспьютеры. Практическое применение
- •14.Вс на основе систолических и волновых матриц
- •Волновая матрица.
- •15.Анализ производ-ти мультипроцессорных вс. Коэффициент ускорения вычислений. Проблемы достижимости линейного роста производительности.
- •16.Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Шина. Кольцо.
- •17.Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Конвейер
- •18.Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Гиперкуб
- •19.Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Дерево.
- •2 0.Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс. Пирамида
- •21.Достоинства и недостатки видов соединений вычислительных модулей в высокопроизводительных вс Древовидно-матричная структура
- •22. Вычислительная поверхность «Meiko» для создания мультипроцессорной системы с заданными свойствами.
- •23.Сравнительные возможности двух методов организации параллельных вычислений в вс: конвейеризации и мультипроцессирования.
- •24. Способы распределения задач по процессорам в мультипроцессорных вс.
- •25. Алгоритм распределения задач по методу Перт.
4.Развитие элементной базы вс.
Несомненно, что одним из главных факторов достижения высокого быстродействия, а значит, и высокой производительности ЭВМ является построение их на новейшей элементной базе. Смена поколений ЭВМ в значительной степени связана с переходами на новые поколения элементной базы. Качество элементной базы является показателем технического прогресса.
Все современные ЭВМ строятся на микропроцессорных наборах, основу которых составляют большие (БИС) и сверхбольшие интегральные схемы (СБИС). Технологический принцип разработки и производства интегральных схем действует уже более четверти века. Он заключается в послойном изготовлении частей электронных схем. СБИС типа Pentium включает около трех с половиной миллионов транзисторов, размещаемых в пятислойной структуре.
Степень микроминиатюризации, размер кристалла ИС, производительность и стоимость технологии напрямую определяются типом литографии. До настоящего времени доминирующей оставалась оптическая литография. В настоящее время ведущие компании, производящие микросхемы, реализуют кристаллы с размерами примерно 400—600 мм2 для процессоров (например, Pentium) и 200—400 мм2 — для схем памяти.
Дальнейшие успехи микроэлектроники связываются с электронной (лазерной), ионной и рентгеновской литографией. Это позволяет выйти на размеры 0,13; 0,10 и даже 0,08 мкм. Вместо ранее используемых алюминиевых проводников в микросхемах повсеместно начинают применять медные соединения, что позволяет повысить частоту работы.
Уменьшение линейных размеров микросхем и повышение уровня их интеграции заставляют проектировщиков искать средства борьбы с потребляемой Wn и рассеиваемой Wp мощностью. При сокращении линейных размеров микросхем в 2 раза, их объемы изменяются в 8 раз. Пропорционально этим цифрам должны меняться и значения мощности, в противном случае схемы будут перегреваться и выходить из строя. Напряжение питания современных микросхем составляет 3 — 2V. Появились схемы с напряжением питания, близким к IV, что выходит за рамки принятых стандартов. Дальнейшее понижение напряжения нежелательно, так как всегда в электронных схемах должно быть обеспечено необходимое соотношение «сигнал-шум», гарантирующее устойчивую работу ЭВМ.
Протекание тока по микроскопическим проводникам сопряжено с выделением большого количества тепла. Поэтому, создавая сверхбольшие интегральные схемы, проектировщики вынуждены снижать тактовую частоту работы микросхем. Таким образом, переход к конструированию ЭВМ на СБИС и ультраСБИС должен сопровождаться снижением тактовой частоты работы схемы. Дальнейший прогресс в повышении производительности может быть обеспечен либо за счет архитектурных решений, либо за счет новых принципов построения и работы микросхем. Альтернативных путей развития просматривается не очень много. Так как микросхемы СБИС не могут работать с высокой тактовой частотой, то в ЭВМ будущих поколений их целесообразно комплексировать в системы. При этом несколько СБИС должны работать параллельно, а слияние работ в системе должно обеспечивать сверхскоростные ИС (ССИС), которые не могут иметь высокую степень интеграции.
Более кратко (то что в лекции)
По утверждению Г. Мура (в 80-х гг.), степени интеграции должны возрастать в два раза каждые 18 месяцев(количество транзисторов на кристалл). 1. Толщина проводника будет уменьшаться: от 0.35 до 0.18 микрон и меньше 1/500 толщины волоса. 2. Увеличение числа слоев в кристалле. Pentium Pro – 5. Сейчас – 8 и более. 3. Уменьшение потребляемой мощности. 4. Изменение архитектуры микропроцессора. Тенденция: реализовать на одном кристалле – СуперЭВМ.
число транзисторов на
кристалл.
100 млн.
1млн
10000
100
70 80 90 2000 годы
2011 – Микро 2011 (40-е с начала выпуска процессоров). 2020 109 - 1012 - степень интеграции. Сетлеретика: ЭВМ будет имитировать всю центральную нервную систему человека – на одном кристалле.