Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Практикум_11.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
6.55 Mб
Скачать

5.5. Программа оценки истинного значения измеряемой величины

Программа для ПК использует формулы (5.1), (5.2), (5.7), а также таблицу коэффициентов Стьюдента. Имя исполняемого файла - «Математическая обработка.exe». Вид окна программы показан на рис. 5.1. Рассмотрим работу программы.

Пусть было произведено N измерений одной и той же величины. Необходимо определить интервальную оценку данной величины по результатам ее прямых независимых измерений, приняв доверительную вероятность 0,9 и уровень промахов (порог значимости) 10%.

Чтобы задать число измерений равным 10, выделяем ячейку таблицы с номером измерения 1 и нажимаем клавишу PageDown необходимое число раз. Для уменьшения количества измерений следует нажимать клавишу PageUp. При вводе значений измеряемой величины следует учитывать, что разделителем целой и дробной части является точка.

Рис. 5.1. Вид окна программы оценки истинного значения измеряемой величины

Теперь необходимо задать доверительную вероятность и порог значимости. Для этого следует нажать курсором мыши на кнопку «Коррекция». В окне «Коррекция» задаются следующие параметры:

  1.  Количество выделяемых позиций.

  2.  Количество цифр после запятой.

  3.  Порог грубых ошибок (в процентах) – порог значимости.

  4.  Доверительный интервал – доверительная вероятность.

Задаем значение порога значимости 10% и доверительный интервал 0,9. Результаты измерений, разнящиеся на 10 и более процентов, программа оценивает как промахи и отбрасывает.

Далее вводим в ячейки столбца «Ввод X» значения измеряемой величины. Для ввода в ячейку нужно сделать двойной щелчок на ней. Разделителем целой и дробной части является точка. Программа произведет вычисления после нажатия на кнопку «Готово» или нажатия клавиши Enter.

В столбце «Коррекция» отображены значения измеренной частоты с учетом заданного числа знаков после запятой и числа значащих цифр. В ячейке «Xср» отображено среднее арифметическое измеренных частот. Ячейка «S» отображает среднеквадратическое отклонение частоты . В столбце «Промах» отображены измерения, которые при заданном пороге грубых ошибок следует интерпретировать как ошибочные, поэтому данные результаты необходимо отбросить, а измерения желательно повторить. Значения, которые являются промахами, отбрасываются программой при вычислениях. В крайней справа ячейке отображается интервальная оценка измеряемой величины

,

где Xср – среднее арифметическое измеряемой величины;

t – коэффициент Стьюдента;

(S) – среднеквадратическое отклонение;

N – число измерений.

Пример 1. Оценить с вероятностью 0,95 истинное значение измеряемой величины А, если при выполнении серии равноточных измерений получены следующие значения: 9; 8; 15; 10; 9; 11; 18; 10; 10; 9; 12; 11; (N'=12). Систематические погрешности известны и из результатов измерений исключены. Случайная погрешность измерений распределена по нормальному закону.

Решение. Зададим в программе уровень промахов (порог значимости) 15% и доверительную вероятность 0,95.

При заданном пороге значимости результаты измерений 15 и 18 идентифицированы программой как промахи и отброшены так, что количество значимых измерений равно N=10. Коэффициент Стьюдента при и равен t=2,262. В результате вычислений получим среднее арифметическое =9,9; средняя квадратическая погрешность единичного измерения ; доверительная граница = 0,85. Таким образом, с вероятностью 0,95 получим результат . После округления получим при =12 и N=10.

Пример 2. Оценить с вероятностью 0,9 истинное значение измеряемой величины А, если при выполнении серии равноточных измерений получены следующие значения: 109; 118; 100; 96; 99; 102; 105; 90; 97; 100; 103; 109; (N=12). Систематические погрешности известны и из результатов измерений исключены. Случайная погрешность измерений распределена по нормальному закону.

Решение. Уровень промахов (порог значимости) равен 10% и доверительная вероятность равна 0,9.

При заданном пороге значимости результат измерения 118 идентифицирован программой как промах. Коэффициент Стьюдента при и равен t=1,815. В результате вычисления получим среднее арифметическое =100,909; средняя квадратическая погрешность единичного измерения ; доверительная граница = 3,047. Таким образом, с вероятностью 0,9 истинное значение измеряемой величины равно . После округления получим при .

Пример 3. При выполнении серии равноточных измерений получены значения 55; 40; 45; 35; 60; 51. Оценить истинное значения измеряемой величины А при уровне промахов (пороге значимости) равным 20% и доверительной вероятности 0,99.

Систематические погрешности исключены. Случайная погрешность измерений распределена по нормальному закону.

Решение. При заданном пороге значимости результат измерения 35 идентифицирован программой как промах. Коэффициент Стьюдента при и равен t = 4,604. В результате вычисления получим среднее арифметическое =52,2; средняя квадратическая погрешность единичного измерения ; доверительная граница = 11,593. Таким образом, с вероятностью 0,99 истинное значение измеряемой величины равно . После округления получим при .

Программа очень удобна тем, что сама определяет, какая величина не попала в доверительный интервал, вычисляет среднее значение и среднюю квадратическую погрешность единичного измерения.