- •Часть 1
- •Оглавление
- •Предисловие
- •Список принятых сокращений и обозначений
- •Правила выполнения работ Домашняя подготовка
- •Работа в лаборатории
- •Рекомендации при построении графиков
- •Техника безопасности. Правила поведения в лаборатории
- •Зачет по лабораторным работам
- •1. Транзисторные усилители мощности
- •1.1. Теоретическая подготовка к работе
- •Электронный режим транзистора
- •Предельная температура транзистора
- •Основные параметры генераторов с внешним возбуждением:
- •Нагрузочные характеристики генераторов с внешним возбуждением
- •Настроечные характеристики генераторов с внешним возбуждением
- •Влияние угла отсечки на параметры генератора с внешним возбуждением
- •Рабочие характеристики усилителя мощности
- •Двухконтурные усилители мощности
- •Примеры расчета транзисторных усилителей мощности
- •1.2. Описание лабораторного стенда рпу–1
- •Индивидуальное задание
- •Содержание отчета
- •Контрольные вопросы
- •Содержание отчета
- •Контрольные вопросы
- •1.3. Описание лабораторного стенда ру-1
- •Содержание отчета
- •Контрольные вопросы
- •Содержание отчета
- •Контрольные вопросы
- •2. Амплитудная модуляция
- •2.1. Теоретическая подготовка к работе
- •Базовая модуляция
- •Коллекторная модуляция
- •Комбинированная модуляция
- •2.2. Описание лабораторного стенда рпу-1
- •Содержание отчета
- •Контрольные вопросы
- •2.3. Описание лабораторного стендаУфс-07
- •Индивидуальное задание
- •Содержание отчета
- •Контрольные вопросы
- •Индивидуальное задание
- •Содержание отчета
- •Контрольные вопросы
- •3. Автогенераторы
- •3.1. Теоретическая подготовка к работе
- •Условия работы автогенератора
- •Диаграммы срыва
- •Управление частотой автогенератора
- •Кварцевые автогенераторы
- •Нестабильность частоты автогенераторов
- •3.2. Описание лабораторного стенда уфс–03
- •Индивидуальное задание
- •Содержание отчета
- •Контрольные вопросы
- •1. Включить для прогрева лабораторный стенд и осциллограф.
- •Свойства автогенератора с кр между базой и эмиттером транзистора
- •Свойство автогенератора с кр в цепи обратной связи (переключатель тип схемы в положении 3)
- •7. Исследовать зависимость частоты генерации и режима работы автогенератора от резонансной частоты колебательной системы.
- •Индивидуальное задание
- •Содержание отчета
- •Контрольные вопросы
- •1. Включить для прогрева лабораторный стенд и осциллограф.
- •7. Исследовать зависимость частоты генерации от температуры кр.
- •Содержание отчета
- •Контрольные вопросы
- •4. Частотная модуляция
- •4.1. Теоретическая подготовка к работе
- •Параметры варикапов
- •Модуляторы на варикапах
- •4.2. Описание лабораторного стенда рпу-1
- •Лабораторное задание
- •Содержание отчета по работе
- •Контрольные вопросы
- •5. Математическая обработка экспериментальных данных
- •5.1. Необходимая точность измерений и расчетов
- •5.2. Классификация погрешностей измерений
- •5.3. Правила приближенных вычислений и оценка ошибок округления при вычислениях
- •5.4. Оценка погрешностей результатов измерений
- •5.5. Программа оценки истинного значения измеряемой величины
- •5.6. Оценка стабильности частоты автогенераторов
- •5.7. Программа вычисления относительной нестабильности частоты колебаний
- •5.8. Вычисление нестабильности частоты и построение графиков с использованием программы Mathcad
- •Приложения
- •1. Таблица коэффициентов разложения для косинусоидального импульса
- •2. Графики коэффициентов разложения для косинусоидального импульса
- •3. Параметры биполярных транзисторов
- •4. Параметры варикапов и варикапных сборок
- •Аннотированный указатель литературы по математической обработке данных Основная
- •Дополнительная
- •Библиографический список Основной
- •Дополнительный
Предисловие
Настоящее учебное пособие предназначено для студентов, обучающихся по направлениям «Радиотехника» и «Телекоммуникации» и изучающих «Радиопередающие устройства», «Устройства генерирования и формирования сигналов», «Формирование колебаний и сигналов» и другие родственные дисциплины.
Основная цель лабораторного практикума – приобретение навыков практической работы с аппаратурой, закрепление и углубление теоретических знаний, полученных студентами при изучении курса. Выполнение студентами экспериментальных и расчетно-графических работ, анализ полученных результатов и оформление этого материала в виде отчета есть, в сущности, прообраз будущей работы специалиста на производстве и в НИИ.
Лабораторный практикум обеспечивает возможность индивидуализации обучения студентов. Каждый студент имеет возможность самостоятельно поработать с измерительной аппаратурой, обработать результаты измерений и сделать выводы по работе. Самым хорошим стимулом для учения является интерес, который вызывает исследуемый или изучаемый материал, и лучшей наградой за интенсивную умственную деятельность – удовлетворенность, доставляемая такой деятельностью. Лабораторную работу лучше всего выполнять за одно занятие продолжительностью четыре часа. На лабораторную работу нужно приходить с выполненным домашним заданием. Занятие начинается с допуска к работе. Затем следует выполнение работы, ее оформление и защита. Желательно, чтобы в бригаде было не более двух-трех человек, т.к. в противном случае остальные студенты будут только наблюдателями. Количество точек измерений и точность расчетов нужно выбирать в разумных пределах. Количество точек измерения должно быть не менее трех и достаточным для построения графика. Чем больше количество точек, тем меньше погрешность измерений, но больше их трудоемкость. Обычно оптимальное количество точек лежит в пределах от 3 до 7. Очень часто студенты добиваются при вычислении такой точности результата, которая совершенно не оправдывается точностью экспериментальных данных. Это создает иллюзию точного расчета, приводит к бесполезным затратам труда и времени. «Цель расчетов не числа, а понимание» - этот афоризм особенно справедлив для высшей школы.
В настоящем пособии дано описание одиннадцати работ и четырех стендов. Обычно лабораторные работы выполняются после рассмотрения на лекциях соответствующего материала, однако нередко они могут опережать лекции. По каждому из лабораторных стендов даны теоретическая подготовка к работе и описание стенда. По каждой работе указана цель работы, приведены домашнее, лабораторное и дополнительное задания, а также содержание отчета и контрольные вопросы. В заключительном разделе пособия даны сведения по математической обработке экспериментальных данных с использование ПК.
В настоящем практикуме использованы лабораторные стенды РПУ-1, разработанные и изготовленные в Московском энергетическом институте (Техническом университете), а также РУ-1, УФС-07 и УФС-03, разработанные и изготовленные в Санкт – Петербургском государственном электротехническом университете (ЛЭТИ) по заказу Всероссийского НПО «РОСУЧПРИБОР». Стенды РПУ-1 имеют сменные блоки и позволяют использовать фронтальный метод выполнения работ. Описания лабораторных работ составлены применительно к рабочим программам и методике проведения лабораторных занятий ТТИ ЮФУ.
Практикум рассчитан на студентов всех форм обучения. Для использования практикума студентами различных форм обучения и специальностей показан возможный вид таблиц, а лабораторные задания содержат помимо основной части и дополнительную. В приложениях даны параметры некоторых транзисторов и варикапов, таблица и графики коэффициентов разложения косинусоидальных импульсов. Для заинтересованного читателя приведен библиографический список. Этот список включает лишь основные работы за последние сорок лет. Для удобства использования библиографический список сформирован в хронологическом порядке и снабжен краткими аннотациями. В некоторых из книг приведена обширная библиография, что и указывается отдельно.
