
- •Що вивчає інформатика. Види інформації
- •Історія розвитку обчислювальної техніки
- •1. Абак і рахівниця
- •Обчислювальні пристрої поділяють на механічні, електромеханічні й електронні (еом — електронні обчислювальні машини).
- •2. Механічні машини
- •3. Утопічний проект ч. Бебиджа
- •4. Електромеханічні машини
- •5. Електронні машини
- •6. Покоління комп'ютерів (еом)
- •7. Перспективи розвитку комп'ютерів
- •Неможливе сьогодні стане можливим «завтра завдяки вам — сьогоднішнім школярам!
- •Опорний конспект
- •3. Одиниці вимірювання кількості інформації
- •4. Основні пристрої пк
- •5. Види памяті
- •6. Оперативна та постійна пам'ять пк
- •17. Класи програмного забезпечення пк
- •18. Операційна система пк
- •20 Пакути приклождних программ
- •21. Файли та директорії
- •2.6 Основні команди операційної системи ms dos
- •23. Операційна система виндовс
- •29. Класифікація баз данних.
6. Оперативна та постійна пам'ять пк
Оперативна пам'ять є одним з найважливіших елементів комп'ютера. Саме з її процесор бере програми і вихідні дані для обробки, у неї він записує отримані результати. Назва “оперативна” ця пам'ять одержала тому, що вона працює дуже швидко, так що процесору практично не приходиться чекати при читанні даних з чи пам'яті запису в пам'ять. Однак дані, що містяться в ній, зберігаються тільки поки комп'ютер включений. При вимиканні комп'ютера вміст оперативної пам'яті стирається. Часто для оперативної пам'яті використовують позначення RAM (Random Access Memory, тобто пам'ять з довільним доступом) .
Важко недооцінити все значення і усю важливість цих невеликих по своїх розмірах плат. Сьогоднішні програми стають усе вимогливіше не тільки до кількості, але і до швидкодії ОЗУ. Однак донедавна ця область комп'ютерної індустрії практично не розвивалася (у порівнянні з іншими напрямками) . Узяти хоча б відео, аудиоподсистеми, продуктивність процесорів і. т.д. Удосконалення були, але вони не відповідали темпам розвитку інших компонентів і стосувалися лише таких параметрів, як час вибірки, був доданий кеш безпосередньо на модуль пам'яті, конвеєрне виконання запиту, змінений керуючий сигнал висновку даних, але технологія виробництва залишалася колишньої, що вичерпала свій ресурс. Пам'ять ставала вузьким місцем комп'ютера, а, як відомо, швидкодія всієї системи визначається швидкодією самого повільного її елемента. І от кілька років назад хвиля технологічного бума докотилася і до оперативної пам'яті. Стали з'являтися нові типи RAM мікросхем і модулів. Зустрічаються такі поняття, як FPM RAM, EDO RAM, DRAM, VRAM, WRAM, SGRAM, MDRAM, SDRAM, SDRAM II (DDR SDRAM) , ESDRAM, SLDRAM, RDRAM, Concurrent RDRAM, Direct Rambus. Більшість з цих технологій використовуються лише на графічних платах, і у виробництві системної пам'яті комп'ютера використовуються лише деякі з них.
У пам'яті комп'ютера зберігаються програми й оброблювана інформація.
Основними характеристиками різних типів і пристроїв пам'яті є їхні обсяг і швидкодія.
Внутрішня пам'ять — це електронні схеми. Внутрішня пам'ять дискретна — це означає, що вона складається з певних «часток» — комірок. Комірка пам'яті називається біт. Один біт — це двійковий розряд пам'яті. Він зберігає двійковий код (0 або 1). Слово «біт» — скорочення від англійського binary digit — двійкова цифра. Отже, пам'ять комп'ютера — це впорядкована послідовність двійкових розрядів (біт). Ця послідовність поділяється на групи по 8 розрядів; кожна така група утворює байт пам'яті.
Отже, слова «біт» і «байт» позначають назви основних одиниць виміру ємності запам'ятовувальних пристроїв. Також використовуються похідні одиниці: кілобайт (1 Кбайт (Кб) = 210 байта = 1024 байта), мегабайт:
(1 Мбайт (Мб) - 1024 Кбайт). гігабайт: (1 Гбайт (Гб) - 1024 Мбайт).
Внутрішня пам'ять складається з оперативного запам'ятовуючого пристрою (ОЗП), або оперативної пам'яті (ОП), і постійного запам'ятовуючого пристрою (ПЗП).
ОЗП — швидка напівпровідникова енергозалежна пам'ять. В ОЗП зберігаються програма, що виконується в даний момент, і дані, з якими вона безпосередньо працює. ОЗП — це пам'ять, яку використовують як для читання, так і для запису інформації. У разі відключення електроживлення інформація в ОЗП зникає (енергозалежність). Англійська назва ОЗП — Random Access Memory (RAM), що перекладається як «пам'ять із довільним доступом». Цією назвою підкреслюється той факт, що процесор може звертатися до комірок пам'яті в довільному порядку, при цьому час читання/запису інформації для всіх комірок є однаковим (він вимірюється мікросекундами).
ПЗП — швидка, енергонезалежна пам'ять. ПЗП — це пам'ять, призначена тільки для читання. Інформація заноситься в неї один раз (зазвичай у заводських умовах) і зберігається постійно (за ввімкненого й вимкненого комп'ютера). У ПЗП зберігається інформація, наявність якої постійно необхідна в комп'ютері.
Зовнішня пам'ять комп'ютера призначена для довгострокового зберігання інформації в компактній формі. До пристроїв зовнішньої пам'яті належать гнучкі й жорсткі магнітні диски, оптичні, магнітооптичні диски тощо. Суттєве значення мають такі їхні показники, як інформаційна ємність, час доступу до інформації, надійність її зберігання, час безвідмовної роботи.
В основу запису, зберігання і зчитуваная інформації на пристроях зовнішньої пам'яті покладено два принципи — магнітний і оптичний, які забезпечують зберігання інформації і після вимикання комп'ютера.
В основі магнітного запису лежить цифрова інформація (у вигляді нулів і одиниць), перетворена на змінний електричний струм, що супроводжується змінним магнітним полем. Намагнічена ділянка відповідає 1, а ненамагнічена — 0.
Оперативний запам'ятовуючий пристрій є, мабуть, одним з найперших побудов обчислювальної машини. Оперативна пам’ять була присутня вже в першому поколінні ЕОМ по архітектурі, створених у сорокових — на початку п'ятидесятих років двадцятого століття. За ці п'ятдесят років перемінилося не одне покоління елементної бази, на яких була побудована пам'ять.
ЕОМ першого покоління по елементній базі були вкрай ненадійними. Так, середнє брешемо роботи до відмовлення для ЕОМ “ENIAC” складала 30 хвилин. Швидкість рахунка при цьому була не порівнянна зі швидкістю рахунка сучасних комп'ютерів. Тому вимоги до збереження даних у пам'яті комп'ютера при відмовленні ЕОМ були суворіше, ніж вимоги до швидкодії оперативної пам'яті. Унаслідок цього в цих ЕОМ використовувалася енергонезалежна пам'ять.
Енергонезалежна пам'ять дозволяла зберігати введені в неї дані тривалий час (до одного місяця) при відключенні харчування. Найчастіше як енергонезалежну пам'ять використовувалися ферритові сердечники. Вони являють собою тор, виготовлених зі спеціальних матеріалів — ферритів. Ферріти характеризуються тим, що петля гістерезиса залежності їхньої намагніченості від зовнішню магнітну підлогу носить практично прямокутний характер.
Унаслідок цього намагніченість цього сердечника міняється стрибками (положення двоїчного 0 чи 1).
Пам'ять на ферритових сердечниках працювала повільно і неефективно: адже на перемагнічування сердечника був потрібно час і затрачалося багато електричної енергії. Тому з поліпшенням надійності елементної бази ЕОМ енергонезалежна пам'ять стала витіснятися енергозалежною — більш швидкою, ощадливої і дешевий. Проте, учені різних країн як і раніше ведуть роботи з пошуку швидкої енергозалежної пам'яті, що могла б працювати в ЕОМ для критично важливих додатків, насамперед військових.
На відміну від пам'яті на ферритових сердечниках напівпровідникова пам'ять енергозависимая. Це значить, що при вимиканні харчування її вміст губиться.
Перевагами ж напівпровідникової пам'яті перед її замінниками є:
мала потужність, що розсіюється;
висока швидкодія;
компактність.
Ці переваги набагато перекривають недоліки напівпровідникової пам'яті, що роблять її незамінної в ОЗУ сучасних комп'ютерів.
7. Зовнішня запомятовуючи пристрої
Крім внутрішньої електронної пам'яті комп'ютера він має і зовнішню пам'ять, що розташовується на дисках - зовнішніх носіях інформації. Зовнішня пам'ять, за об’ємом, як правило, набагато більше оперативної пам'яті комп'ютера, однак швидкість взаємодії процесора з оперативною пам'яттю вище, ніж з будь-якими зовнішніми накопичувачами.
Різновиди дисків:
- жорсткі чи фіксовані, вбудовані в системний блок комп'ютера і часто називаються як ВІНЧЕСТЕР, однак у останній час почали продаватися зо-внішні накопичувачі на жорстких магнітних дисках – зовнішні вінчестери.
- гнучкі, що вставляються в дисководи комп'ютера і називаються ДИСКЕТАМИ чи флопі-дисками. Дисководи розміщаються в системному блоці комп'ютера.
- оптичні диски (CD-ROM) читаються спеціальними пристроями, які теж вбудовані у системний блок. В даний час існують пристрої, що дозволяють не тільки прочитувати CD-ROM диск, але і робити однократний запис на диск (CD-R). Такі диски читаються на будь-якому пристрої CD-ROM. Однак є пристрої, що можуть робити перезапис оптичних дисків (CD-RW CD-ReWrіtable). Такі диски вже не завжди можуть бути прочитані звичайними CD-ROM плейером.
- DVD диски - розшифровується абревіатура DVD як dіgіtal versatіle dіsc, тобто універсальний цифровий диск. Зовні DVD-диски схожі на CD і в них використовується той же принцип запису інформації, але завдяки удосконаленню технології, ємність таких дисків у багато разів більше, ніж ємність CD-диска. Найпростіші DVD-диски (одношарові й однобічні) мають ємність 4,9 Гб. Для читання таких дисків потрібні спеціальні DVD-приводи.
Будова і принцип роботи дисковода
Основні внутрішні елементи дисководу – дискетна рама, шпиндельний двигун, блок головок з приводом і плата електроніки.
Шпиндельний двигун - плоский багатополюсний, з постійною швидкістю обертання 300 об/хв. Двигун приводу блоку головок - кроковий, з черв’ячною, зубчатою або стрічковою передачею.
Для розпізнавання властивостей дискети на платі електроніки біля переднього торця дисководу встановлене три механічних натискних датчика: два - під отвором захисту і щільності запису, і третій - за датчиком щільності - для визначення моменту опускання дискети.
Будова і принцип роботи вінчестера
Типовий вінчестер складається із гермоблока і плати електроніки. В гермоблоці розміщені всі механічні частини, на платі - вся керуюча електроніка, за
Будова дисковода компакт-дисків
Стандартний компакт-диск складається із трьох шарів: підкладка з полікарбоната, на якій відштампований рельєф диску, напилене на неї покриття, що складається із алюмінію, золота, срібла або іншого сплаву, і більш тонкий захисний шар полікарбоната або лаку, на що наносяться надписи і малюнки.
Інформаційний рельєф диска являє собою з спіральну доріжку, що іде від центру до периферії, вздовж якої розміщені заглиблення (піти). Інформація кодується чергуванням пітів і проміжків між ними.
Типовий привід складається із плати електроніки, шпиндельного двигуна, системи оптичної зчитувальної головки і системи завантаження диску.
На платі електроніки розміщені всі керуючі схеми приведення, інтерфейс з контролером комп'ютера, роз¢єми інтерфейсу і виходу звукового сигналу.
Шпиндельний двигун служить для приведення диску в обертання з постійною або змінною лінійною швидкістю.
Система оптичної головки складається з самої головки і системи її переміщення. В головці розміщені лазерний випромінювач, на основі інфрачервоного лазерного світлодіода, система фокусування, фотоприймач і попередній підсилювач.
Інтерфейси вінчестерів
Інтерфейс SCSI (Small Computer System Interface - інтерфейс малих комп'ютерних систем, вимовляється як "сказі") є універсальним інтерфейсом для будь-яких класів приладів.
Інтерфейс IDE (Integrated Drive Electronics - електроніка, вбудована в привід), або ATA (AT Attachment – підключення до AT) - простий і недорогий інтерфейс для PC AT.
Режими роботи IDE-пристроїв
На одному IDE-кабелі можуть працювати до двох приладів: Master (MA) - основний, або перший, і Slave (SL) - додатковий, або другий. Якщо пристрій на кабелі один, він звичайно може працювати в режимі Master, однак у деяких для цього є окремий режим Single.
Внутрішній вінчестер Quantum Зовнішній вінчестер компанії Seagate, ємністю 160 Гб
Оптичний диск (CD)
Ємність 80 хв/700 Мб
(120 мм) Внутрішній пристрій для читання та запису CD дисків фірми Yamaha
Pjdysiysq пристрій для читання та запису CD дисків компанії Plextor
Пристрій для читання та запису DVD дисків від компанії Sony DVD-диск емкостью 4,7 Гб
и лицевая сторон аобложкивинятком підсилювача, розміщеного всередині гермоблока біля головок.
В дальній частині від роз¢ємів гермоблока встановлений шпиндель з одним або декількома дисками. Диски виготовлені частіше з алюмінію і покриті тонким шаром окису хрому.
Під дисками розміщений двигун. При обертанні дисків створюється сильний потік повітря, що циркулює по периметру гермоблока і постійно очищається фільтром, встановленим на одній з його сторін.
Ближче до роз¢ємів, з лівої або правої сторони від шпинделя, знаходиться поворотний позиціонер. При поворотах коромисла позиціонера головки здійснюють рух.
Гермоблок герметично закритий і заповнений повітрям.
Плата електроніки підключається до гермоблока через один-два роз¢єми різної конструкції. На платі розміщені основний процесор вінчестера, ПЗП з програмою, робочий ОЗП, цифровий сигнальний процесор (DSP) і інтерфейсна логіка.
16. комп. Мережі
Загальне поняття про комп’ютерні мережі
Сучасній людині важко уявити собі життя без різних засобів зв’язку. Пошта, телефон, радіо та інші комунікації перетворили людство в єдиний “живий” організм, змусивши його обробляти величезний потік інформації. Підручним засобом для обробки інформації став комп’ютер.
Однак масове використання окремих, не взаємозвязаних комп’ютерів породжує ряд серйозних проблем: як зберігати використовувану інформацію, як зробити її загальнодоступною, як обмінюватися цією інформацією з іншими користувачами, як спільно використовувати дорогі ресурси (диски, принтери, сканери, модеми) декільком користувачам. Рішенням цих проблем є об’єднання комп’ютерів у єдину комунікаційну систему – комп’ютерну мережу.
Комп’ютерна мережа – це система розподіленої обробки інформації між комп’ютерами за допомогою засобів зв’язку.
Комп’ютерна мережа являє собою сукупність територіально рознесених комп’ютерів, здатних обмінюватися між собою повідомленнями через середовище передачі даних.
Передача інформації між комп’ютерами відбувається за допомогою електричних сигналів, які бувають цифровими та аналоговими. У комп’ютері використовуються цифрові сигнали у двійковому вигляді, а під час передачі інформації по мережі – аналогові (хвильові). Частота аналогового сигналу – це кількість виникнень хвилі у задану одиницю часу. Аналогові сигнали також використовуються модеми, які двійковий ноль перетворюють у сигнал низької частоти, а одиницю – високої частоти.
Комп’ютери підключаються до мережі через вузли комутації. Вузли комутації з’єднуються між собою канали зв’язку. Вузли комутації разом з каналами зв’язку утворюють середовище передачі даних. Комп’ютери, підключені до мережі, у літературі називають вузлами, абонентськими пунктами чи робочими станціями. Комп’ютери, що виконують функції керування мережею чи надають які-небудь мережеві послуги, називаються серверами. Комп’ютери, що користуються послугами серверів, називаються клієнтами.
Кожен комп’ютер, підключений до мережі, має ім’я (адресу). Комп’ютерні мережі можуть обмінюватися між собою інформацією у вигляді повідомлень. Природа цих повідомлень може бути різна (лист, програма, книга і т.д.). У загальному випадку повідомлення по шляху до абонента-одержувача проходить декілька вузлів комутації. Кожний з них, аналізуючи адресу одержувача в повідомленні і володіючи інформацією про конфігурацією мережі, вибирає канал зв’язку для наступного пересилання повідомлення. Таким чином, повідомлення “подорожує” по мережі, поки не досягає абонента-одержувача.
Для підключення до мережі комп’ютери повинні мати:
апаратні засоби, що з’єднують комп’ютери із середовищем передачі даних;
· мережеве програмне забезпечення, за допомогою якого здіснюється доступ до послуг мережі.
У світі існують тисячі різноманітних комп’ютерних мереж. Найбільш істотними ознаками, що визначають тип мережі, є ступінь територіального розсередження, топологія і застосовані методи комутації.
По ступеню розсередження комп’ютерні мережі поділяються на локальні, регіональні і глобальні.
Топологія мереж
Топологія мережі – це її геометрична форма або фізичне розташування комп’ютерів по відношенню один до одного. Існують такі типи топологій: зірка, кільце, шина, дерево, комбінована.
Мережа у вигляді зірки містить центральний вузол комутації, до якого посилаються всі повідомлення з вузлів.
Мережа у вигляді кільця має замкнений канал передачі даних в одному напрямку. У кільцевій топології вузли, з’єднуючись послідовно один з одним, утворюють кільце. Дані по мережі передаються від вузла до вузла. Передача інформації з кільця здійснюється тільки в одному напрямку, наприклад, по годинній стрілці. Така мережа проста в керуванні, однак її надійність цілком визначається надійністю центрального вузла.
У мережі з деревоподібною чи ієрархічною топологією кожен вузол зв’язаний з одним вищестоячим керуючим вузлом і одним чи декількома нижчестоячими керованими вузлами. Назва топології зв’язана з тим, що вона нагадує дерево, гілки якого ростуть з кореня вниз до самого нижнього рівня. Топологія деревоподібної мережі найчастіше відображає ієрархічну організаційну структуру установи, у рамках якої вона створена. Така мережа приваблива з погляду простоти керування, розширюваності.
Інформація передається послідовно між адаптерами робочих станцій доти, доки не буде прийнята отримувачем.
Топологія “Шина” використовує як канал для передечі даних, коаксіальний кабель. Усі комп’ютери підєднуються безпосередньо до шини.
У мережі з топологією “Шина” дані передаються в обох напрямках одночасно.
У локальних мережах інформація передається на невелику відстань. Локальні мережі поєднують комп'ютери, що розташовані недалеко один від одного. Для передачі інформації використо-вуються високошвидкісний канал передачі даних, швидкість у якому приблизно така сама, як швидкість внутрішньої шини комп'ютера. Найбільш відомими типами локальних мереж є Ethernet і Token Ring.
Регіональні обчислювальні мережі розташовуються в межах визначеного територіального регіону (групи підприємств, міста, області і т.д.). Регіональні обчислювальні мережі мають багато спільного з ЛОМ, але вони по багатьох параметрах більш складні і комплексні. Підтримуючи великі відстані, вони можуть викорис-товуватися для об’єднання декількох ЛОМ в інтегрованому мережеву систему.
Глобальні обчислювальні системи охоплюють територію держави чи декількох держав і видовжуються на сотні і тисячі кілометрів. Глобальні обчислювальні мережі часто з’єднують багато локальних і регіональних мереж. У порівнянні з локальними більшість глобальних мереж відрізняє повільна швидкість передачі і більш низька надійність. Найбільш відомою глобальною мережею є мережа Internet.
Мережеві протоколи. З появою мереж була усвідомлена необхідність створення правил і процедур, що визначають принципи взаємодії користувачів у мережі. Такі правила називаються прото-колами. Для мереж розроблена семирівнева ієрархічна структура протоколів. Відповідно до цієї структури протоколів потік інфо-рмації в мережах має дискретну структуру, логічною одиницею якої є пакет (кадр). Вся інформації між вузлами мережі передається у вигляді пакетів, що мають інформаційні і керуючі поля: порядковий номер, адреса одержувача, контрольна сума і т.д.
Верхній (сьомий) рівень протоколів є основним, заради якого існують всі інші рівні. Він називається прикладним, оскільки з ним взаємодіють прикладні програми кінцевого користувача. Прикла-дний рівень визначає семантику, тобто зміст інформації, якою обмі-нюються користувачі.
Шостий рівень називається рівнем представлення. Він визначає синтаксис переданої інформації, тобто набір знаків і способи їхнього представлення, що є зрозумілим для користувача.
П’ятий рівень (сеансовий) керує взаємодією користувачів у ході сеансу зв’язку між ними.
Четвертий рівень (транспортний) забезпечує пересилання повідомлень (виконує поділ повідомлень на пакети на передавальному вузлі і збірку повідомлень з пакетів на прийомному).
Третій рівень (мережевий) виконує маршрутизацію пакетів даних у мережі.
Другий рівень (канальний) здійснює відповідне оформлення пакетів даних для передачі по каналу зв’язку (такі пакети називають кадрами),контроль помилок і відновлення інформації після помилок.
Перший рівень (фізичний) здійснює перетворення даних пакета в сигнали, передані по каналу зв’язку.
Кожний з протоколів взаємодіє тільки із сусідніми по ієрархії протоколами. Так, наприклад, прикладні програми, взаємодіючи з протоколами шостого і сьомого рівнів, не залежать від особливостей реалізації конкретної мережі, обумовленої протоколами нижчих рівнів.
Зєднання мереж. Раніше згадувалося, що мережа, особливо глобальна, може включати декілька підмереж. Природно, що в кожній з підмереж можуть бути реалізовані свої мережеві протоколи, у загальному випадку несумісні з протоколами інших підмереж. При передачі пакетів з однієї підмережі в іншу необхідно здійснювати перетворення несумісних протоколів. овторювачі регенерують пакети даних при передачі, не змінюючи їхню структуру. Повторювачі застосовують для з’єднання мереж з різним середовищем передачі даних чи для збільшення довжини мережі. Мости використовуються для об’єднання мереж, що розрізняються форматом кадру. Маршрутизатори використовую-ться для обєднання мереж, що розрізняються способами адресації абонентів. У такому випадку маршрутизатор транслює адреси однієї мережі в адреси іншої. Маршрутизатор може також використо-вуватися для комутації пакетів, що надійшли, у залежності від адреси одержувача в ту чи інші мережу. Шлюзи використовуються для сполучення різнорідних мереж, що розрізняються протоколами вищих рівнів. Так, наприклад, у світі існує кілька систем електронної пошти, що функціонують у різних мережах. Кожна має свій, не сумісний з іншими, протокол електронної пошти. Протокол електронної пошти являє собою реалізацію вищих рівнів протоколів для конкретного виду послуг – пересилання листів. Очевидно, що для пересилання листів з однієї системи в іншу необхідно здійснювати перетворення формату листа, використовуваного алфавіту і т.д. Таке перетворення повинен виконувати шлюз.
Послуги комп’ютерних мереж.
Комп’ютерні мережі в залежності від призначення можуть надавати користувачам різні послуги. Найбільш розповсюдженими видами послуг є:
· електронна пошта;
· телеконференції;
· передача файлів;
· віддалене керування комп’ютером.
Кожен вид послуг регламентується протоколами. Ці прото-коли реалізують відповідні служби.
Електронна пошта. Найбільш широко використовуваною послугою комп’ютерних мереж є електронна пошта. Електронна пошта схожа на звичайну пошту. З її допомогою лист (текст), постачений стандартним заголовком, доставляється на зазначену адресу і міститься у файл, поштову скриньку. Поштова скринька може знаходитися на будь-якому компютері мережі, до якого є доступ від компютера-адресата. Для обслуговування електронної пошти на комп’ютері встановлюються спеціальні програми, що утворюють поштову службу.
Існує безліч систем електронної пошти, що розрізняються протоколами реалізації поштової служби. Ці протоколи визначають формат поштового повідомлення. Звичайно це повідомлення включає такі поля:
· адреса відправника й адреса одержувачів;
· ідентифікатор повідомлення, унікальний для кожного листа. Його можна використовувати для посилань на лист як на вихідний номер;
· відмітки про походження листа через проміжні комп’ютери;
· тема листа. Поштова служба може відсортувати листи по темах;
· власне текст листа.
Не всі поля обов’язково повинні бути присутні. Деякі поля поштова служба додає автоматично, інші задає автор листа. Сучасні поштові служби дозволяють також виконувати операції формату-вання для тексту листа. Деякі поштові служби допускають можли-вість наявності в листі вкладення у вигляді файлу. Файл може знаходитися всередині листа чи лист може містити тільки посилання на файл у вигляді піктограми. В остатньому випадку файл із листом не передається. Посилатися можна як на файл, що знаходиться на комп’ютері відправника, так іна будь-якому іншому доступному комп’ютері мережі. Для одержання файла досить клацнути мишею на піктограмі файла. Поштова служба самостійно виконає всі опе-рації по пересиланню файла.
Телеконференція. Ідея телеконференції полягає в тому, що будь-який користувач, що бажає щось висловити, посилає в мережу повідомлення. Це повідомлення стає доступним для всіх коритсувачів мережі і кожен його може прочитати. Щоб читачу користувачу було легше було орієнтуватися в потоці повідомлень, усі повідомлення розбиваються на групи по темах. Такі групи називаються групами новин. На кожнім повідомленні, що посилаються на телеконференцію, автор вказує, до якої групи новин воно відноситься. Імена груп новин складаються з декількох слів, розділених крапками. Перше слово позначає широку область, до якої відноситься група, а кожне наступне уточнює тему. Для того, щоб одержувати повідомлення тієї чи іншої групи, читач повинен на неї підписатися. Підписка полягає в посилці на сервер груп новин спеціального повідомлення, у якому вказуються групи новин, на які підписується користувач. Після підписки користувач може читати всі повідомлення групи. Він може також посилати повідомленя в гупу новин. При необхідності можна відмовитися від підписки на будь-яку групу. Для підтримки телеконференції викоритовуються спеціальні програми, що реалізують протоколи обміну новинами. У деяких мережах для обміну повідомленнями груп використовуються поштова служба.
Передача файлів. Одніяє із важливих послуг, наданих комп’ютерною мережею, є можливість доступу до файлів і каталогів користувачів, розміщених на інших, віддалених комп’ютерах мережі. Доступ до таких каталогів і файлів можливий тільки з дозволу користувача, на комп’ютері якрго розміщені зазначені файли. У дозволі вказується імена користувачів, яким дозволений доступ, паролі, по яких здійснюється доступ, а також вид доступу. До деяких каталогів і файлів може бути дозволений вільний доступ по читанню без вказівки пароля. Користувач, що одержав доступ, може переглядати каталоги і файли, копіювати їх на свій комп’ютер чи виконувати інші дії в рамках наданих йому прав. Служби передачі файлів реалізують також послучи пошуку файлів по іменах чи індексах слів для файлів.
Віддалене керування. При віддаленому керуванні іншим комп’ютером мережі користувач зі свго комп’ютера може керувати роботою віддаленого комп’ютера. При цьому створюється ілюзія, що клавіатура, миша, дисплей користувача безпосередньо підключені до віддаленого комп’ютера. Всі введені користувачем команди передаються на віддалений комп’ютер і виконуються на ньому. Воно дозволено тільки з дозволу користувача, також необ-хідно вказати ім’я комп’ютера і пароль. Таке керування дозволяє використовувати ресурси віддаленого комп’ютера.
Локальні обчислювані мережі
Досвід експлуатації обчислювальних мереж показує, що левова частка генерованої у таких мережах інформації використо-вуються тією ж установою, підприємством, що її породила, тобта значна частина мережевої інформації призначена для місцевих користувачів. Кріт того, багато користувачів мережі зацікавлені у вільному доступу та ефективній спільній експлуатації дорогого комп’ютерного устаткування. Ці задачі вирішують ЛОМ. Відмі-нними ознаками ЛОМ можна вважати охоплення невеликої території, висока надійність передачі даних.
Середовище передачі ЛОМ. Середовище передачі даних у ЛОМ може бути провідним і безпровідним. У провідному середовищі інформація передається по кабелю, у безпровідному – за допомогою електромагнітних хвиль різної природи: інфрачервоних, радіохвиль і т.д. У ЛОМ використовуються три типи кабелю: кручена пара, коаксіальний і оптоволокольнний.
Методи доступу до середовища передачі даних у ЛОМ. Так як середовище передачі є загальним ресурсом для усіх вузлів мережі, необхідно встановити правила, по яких вузли будуть мати доступ до цього загальгого ресурсу. Так сукупність правил називається методом доступу. У ЛВС переважно використовуються два методи доступу: винадкові і детерміновані.
При випадкових методах доступу усі вузли мережі конкурують між собою за середовище передачі. Можлива одночасна спроба передачі декількома вузлами, у результаті чого відбувається перекручування (зіткнення) інформаційних пакетів. Найбільш розповсюдженим випадковим методом доступу є множиний доступ з контролем несучої і виєвленням зіткнень, що найчастіше застосовується в ЛОМ із шинною топологією. При використанні цього методу вузол, що бажає передати інформацію, прослуховує середовище передачі – це і є контроль несучої. Дочекавшись звільнення середовища передачі, вузол починає видавати в мережу інформаційний пакет, одночасно продовжуючи прослуховувати середовище передачі. Якщо в середовищі передачі немає пакетів інших вузлів, то переданий пакет не спотворюється. Якщо ж у цей же самий час почали передачу й інші вузли, то відбувається накладення пакетів, і переданий пакет спотворюється. У цьому випадку вся передана вузлами мережі інформація ігнорується. Вузли, що беруть участь у зіткненні, вичікують випадковий відрізок часу, після закінчееня якого повторюють передачу. При детермінованих методах доступ вузлів до середовища передачі реламентуються за допомогою спеціального керуючого механізму. Найбільш відомими детермінованими методами доступу є опитування і передача права.
Мережеві адаптери. Підключення комп’ютерів до мережі передачі даних можна здійснювати через стандартні послідовні і паралельні порти, що знаходяться на системному боці. Однак через істотні недоліки, у першу чергу низьку швидкість передачі даних цей спосіб підключення використовується тільки в недорогих ЛОМ з малим числом вузлів. Частіше для цих цілей використовуються спеціальні плати, шо вставляються в гнізда розширення системного блоку комп’ютера – мережеві адаптери чи мережеві карти. Мережеві адаптери підтримують протоколи нижнього рівня для ЛОМ. Мережеві адаптери можуть налагоджуватися на певний режим роботи програмно чи за допомогою перемикачі.
Деякі мережі адаптери мають програми виклику операційної системи із сервера ЛВС. Такі програми зберігаються у мікросхемах постійної пам’яті. Це дає можливість використовувати в ЛВС бездискові комп’ютери.
ЛОМ типу Ethernet. Мережі типуEthernet з’явилися на початку 70-х років. Мережі цього класу як правило мають шинну топологію. Середовище передачі даних у мережі Ethernet – кручена пара чи коаксіальний кабель з опором 50 Ом. Використовуєтьчя два види коаксіального кабелю: товстий діаметром близько 1 см і тонкий діаметром близько 0,5 см. Метод доступу до шини випадковий з контролем несучої і виявленням зіткнень. Для роботи комп’ютера в мережі неодхідна мережева плата Ethernet. Підключення мережевої плати до шини для тонкого кабеля – 195 м, для товстого – 500 м. На кінцях шини встановлюються термінатори. Один і тільки один з термінаторів повинний бути заземлений. До такої шини може бути підключено не більш 30 чи 100 станцій.
При необхідності охопити локальною мережею Ethernet територію більшу, ніж це дозволяє коаксіальний кабель, застосо-вують додаткові пристрої – повторювачі. Їхнє завдання в мережі – ретранслювати всю інформацію, що надходить, відновлюючи амплі-туду, фазу і форму сигналу. У мережі може бути тільки до 4-х пов-торювачів. Це дозволяє збільшити максимальну довжину шини до 925 метрів для тонкого і до 2500 метрів для товстого кабелю.
Кручена пара використовується переважно в мережах Ethernet зіркоподібної топології. Комп’ютери з’єднуються в мережу за допомогою концентраторів. Кожен комп’ютер підключається до концентратора за допомогою відповідного розніму. Відстань комп’ютера від концентратора не повинна перевищувати 100 метрів.
Мережі типу TokenRing. Мережі типу Token Ring з’явилися на початку 80-х років. Мережі цього класу мають кільцеву топо-логію. Середовище передачі даних – кручена пара, коаксіальний кабель, оптоволоконний кабель. У кільці можуть бути використані змішані типи кабелю. Метод доступу до середовища передачі детермінований з пердачею права. Швидкість передачі даних у мережі Token Ring складає величину порядка 4-16 Мбит в секунду. Максимальна довжина мережі – близько 6 кілометрів. Максимальна кількість станцій – 255.
Світова глобальна комп’ютерна мережа INTERNET
Internet – це світова глобальна комп’ютерна мережа, що поєднує мільйони комп’ютерів і десятки мільйонів користувачів в усьму світі. Вона охоплює практично всю земну кулю і включає тисячі мережевих підсистем з комп’ютерами різних типів: від персональних до суперкомпютерів. Ніяка організація і ніхто особисто не адміністує мережу, вона існує і розвивається завдяки загальним зусиллям сотен тисяч добровільних активістів і багатьох організацій у різних куточках світу. Кожен користувач мережі Internet має унікальне ім’я (адресу).
Система імен мережі Internet. Адреса користувача в мережі Internet пердставлена 4-байтним числом, байти розділені крапкою. Оскільки граничне значення числа в кожнім байті 255, то діапазон користувачів від 0.0.0.0 до 255.255.255.255. Адреса в цифровій формі незручна і важка для запам’ятовування, тому була створена доменна система імен. Ця система прив’язує до цифрової адреси легку для запам’ятовування комбінацію скорочених слів. Простір доменних імен має ієрархічну структуру, схожу на структуру імен каталогів файлової системи. Це означає, що на кожнім рівні такої ієрархії можуть вказуватися імена піддоменів і конкретних комп’ютерів. Першим праворуч указується скорочена назва країни, наступним – імя піддомена і так далі до імені комп’ютера.
Слід підкреслити, що доменне ім’я не описує шлях, по якому потрібно передавати повідомлення, а тільки вказує, де знаходиться адресат. Шлях, по якому пересилаються повідомлення, вибирають служби маршрутизації. У загальному випадку існує кілька шляхів, по яких можна доставити повідомлення зазначеному адресату, і відправник незнає, по якому маршрути пересилається повідомлення в конкретному випадку.
Для комп’ютерів СЩА повне доменне ім’я може не включати код країни. Це повязано з тим, що мережа Internet “виросла” з національної мережі Arpanet, що охоплює тільки територію США. У цій мережі ім’я домена найвищого рівня визначало тип організації. Таку ж систему доменних імен іноді використовують і поза територією США.
При передачі повідомлення по мережі в ньому повинна бути IP-адреса. Для перекладу імені з цифрової форми в доменну і назад використовуються так звані DNS-сервери.
Сервіси і протоколи мережі Internet. У мережі Internet використовується передача з комутацією пакетів по протоколу TCP/IP. Цей протокол складається з транспортного протоколу TCP і мережевого протоколу IP. Сервіси мережі реалізуються протоколами більш високих рівнів.
Мережа Internet надає такі види сервісу:
1. Електронна пошта
2. Мережеві новини
3. Передача файлів
4. Пошук файлів
5. Віддалене керування комп’ютером
6. Предявлення і передача інформації в гіпермедійній формі.
Підключеня користувачів до мережі Internet. Послуги по підключенню до мережі Internet і використання сервісів Internet надають спеціальні організації – провайдери. Можна виділити 4 способи приєднання користувачів до мережі Internet. Ці способи визначають доступні сервіси Internet, швидкість обміну інформацією, а також вартість підключення і користування.
Користувач до мережі Internet може підключатися такими способами:
1. З’єднання в режимі віддаленого термінала. Комп’ютер користувача через модем і телефонну лінію з’єднується з комп’ютером, підключеним до Internet. Комп’ютер користувача не має IP-адреси і працює в режимі віддаленого термінала.
2. SLIP/PPP з’єднання.
3. З’єднання через ЛОМ. У цьому випадку комп’ютер користувача до ЛОМ, сервер якої має вихід в Internet. Користувачу доступні всі послуги, якими коритсується сервер.
4. З’єднання через виділену лінію. Комп’ютер користувача з’єднаний виділеною високошвидкісною лінією з мережею і може користуватися всіма сервісами Internet. Для підкючення до такої лінії звичайно використовуються спеціальні плати.