- •Дипломна робота бакалавра
- •Розділ і. Огляд літератури
- •1.1. Антиоксидантна система, як захист проти вільних радикалів
- •1.2. Будова та механізм дії супеоксиддисмутази
- •1.3. Структурно-функціональна характеристика каталази
- •1.4. Будова та функціональна активність глутатіонпероксидази
- •1.5. Гістамін: історія вивчення, структура, шляхи синтезу та вивільнення
- •1.6. Дія гістаміну на організм
- •Розділ іі. Матеріали і методи дослідження
- •2.1. Характеристика об'єкта дослідження
- •2.2. Визначення активності супероксиддисмутази
- •2.3. Визначення активності каталази
- •2.4. Визначення активності глутатіонпероксидази
- •Розділ ііі. Результати та їх обговорення
- •3.1. Активність супероксиддисмутази у нирках щурів за дії гістаміну
- •3.2. Активність каталази у нирках щурів за дії гістаміну
- •3.3. Активність глутатіонпероксидази у нирках щурів за дії гістаміну
- •Розділ 4. Охорона праці
- •4.1. Аналіз стану виробничих умов
- •4.1.1. Характеристика лабораторії
- •4.1.2. Аналіз методів досліджень та характеристика обладнання
- •4.1.3. Характеристика об’єкту дослідження та речовин, їх небезпечні властивості
- •4.2. Організаційно – технічні заходи
- •4.2.1. Організація робочого місця та роботи
- •4.2.2. Санітарно - гігієнічні вимоги до умов праці
- •4.2.3. Безпека в надзвичайних ситуаціях
- •Висновки:
- •Список літератури
1.2. Будова та механізм дії супеоксиддисмутази
Ключовим ферментом антиоксидантного захисту є СОД. Разом з каталазою та іншими антиоксидантними ферментами, вона захищає організм від високотоксичних кисневих радикалів. При її участі розривається ланцюг вільнорадикальних процесів на початку свого зародження на стадії одно-електронного відновлення кисню з утворенням супероксидного аніон-радикалу. Таким чином, вона відіграє найважливішу роль в антиоксидантному захисті практично всіх типів клітин, що так або інакше знаходяться у контакті з киснем [9, 12, 27, 28].
Реакцію дисмутації супероксиду, що каталізується супероксиддисмутазою, можна розділити на дві частини (парціальні реакції) наступним чином:
M(n+1)+−СОД + O2۟¯ → Mn+−СОД + O2
Mn+−СОД + O2۟¯ + 2H+ → M(n+1)+−СОД + H2O2
де, М (перехідний метал) = Сu (n=1); Mn (n=2); Fe (n=2); Ni (n=2).
В даній реакції окиснний стан катіона метала варіює між n та n+1.
На даний час виділено кілька ізоферментних форм СОД. В організмі людини існує три типи супероксиддисмутаз. СОД1 – знаходиться у цитоплазмі, СОД2 – у мітохондріях (рис. 1), а СОД3 – це позаклітинна форма. Перша форма – димерна, тоді як друга і третя форми – тетрамерні (складаються з чотирьох рівних субодиниць). СОД1 і СОД3 мають мідь у активному центрі. Cu, Zn-СОД (31 кДа) є найбільш розповсюдженою та добре вивченою. Вона міститься у клітинах еукаріот і володіє чутливістю до дії ціанідів. Молекула ферменту складається з двох ідентичних субодиниць, кожна з яких в області активного центру містить один атом міді та цинку [28, 42,43].
Рис. 1. Структура мітохондріальної супероксиддисмутази людини
Mn-СОД є ціанрезистентною формою і знаходиться в основному в матриксі мітохондрій і хлоропластів еукаріот. На даний час цей ізофермент СОД виявлено у бактерій. Складається з чотирьох субодиниць, що містять іон марганцю в області активного центру. Виділяють ще одну ізоформу СОД – залізовмісний фермент, який спочатку був помічений у прокаріот. На даний час доведено, що цей фермент широко розповсюджений [4, 5].
1.3. Структурно-функціональна характеристика каталази
Каталаза – фермент, що каталізує реакції розчеплення пероксиду водню, що утворюється у процесі біологічного окиснення, на воду і молекулярний кисень: 2H2O2 = 2H2O + O2. В окисненому стані каталаза може проявляти пероксидазну активність, беручи участь в окисненні спиртів і альдегідів. КАТ є одним із найшвидших ферментів: одна молекула каталази здатна перетворити кілька мільйонів молекул пероксиду водню на воду і кисень за секунду [34].
За структурою, КАТ – тетраметр з чотирьох поліпептидних ланцюжків, кожний близько 500 амінокислот у довжину (рис. 2). Кожна субодиниця у своєму активному центрі містить гем і зв’язані з молекулою НАДФН. До активного центра іде вузький канал, який перешкоджає проникненню більших молекул за Н2О2. При дисоціації субодиниць каталаза втрачає свою активність. При дослідженні третинної структури було встановлено, що кожна субодиниця містить великий і широкий домен з антипаралельними бета-складками, спіральними включеннями і малий домен з чотирма альфа-спіралями. Лігандами гемового заліза виступають залишки тирозину, гістидину та аспарагіну.
Рис. 2. Будова каталази
Каталітична швидкість каталази досить висока і складає приблизно 45 тис. молекул Н2О2 за секунду.
Оптимальна кислотність для роботи каталази – рН 7,0, тоді як оптимальна температура залежить від виду.
Найбільша концентрація каталаз у печінці. В пероксисомах гепатоцитів частина каталаз складає близько 40% усіх білків, також висока її концентрація є у мітохондріях і ендоплазматичному ретикулумі [28].
КАТ міститься в більшості аеробних клітин. У тварин вона міститься майже у всіх тканинах організму. Найбільша її кількість у печінці, нирках і еритроцитах. На субклітинному рівні КАТ, в основному, локалізована в пероксисомах і цитозолі. Найбільша її кількість може міститися у лізосомах і мітохондріях. Каталаза відноситься до внутрішньоклітинних ферментів, через високу молекулярну масу погано проникає у внутрішньоклітинне середовище, де може швидко піддаватися протеолітичному розщепленню [45].
