
- •Теория принятия решений. История, становление науки, термин «Теория систем»
- •Понятие «системный анализ».
- •Системный анализ. Методология, основные определения.
- •Системный анализ. Аппаратная реализация и практическое приложение.
- •Принципы системного подхода
- •Основные понятия исследования операций: понятие, цель, оптимальные решения.
- •Лицо принимающее решение (лпр), понятие статической и динамической задачи.
- •Постановка задач для принятия оптимальных решений.
- •Методология и методы принятия решений: Неформальные методы.
- •Методология и методы принятия решений: Коллективные методы.
- •Методология и методы принятия решений: Количественные методы.
- •Экономико-математическое моделирование. Основные понятия.
- •Классификация моделей в экономико-математическом моделировании.
- •Классификация решаемых экономических задач.
- •Определение математической модели экономической задачи.
- •Виды математических моделей линейного программирования.
- •Составление математической модели.
- •Экономическая формулировка математической модели прямой и двойственной задач
- •Правило построения математической модели двойственной задачи
- •Теоремы двойственности. Первая теорема двойственности.
- •Теоремы двойственности. Вторая теорема двойственности.
- •Теоремы двойственности. Третья теорема двойственности.
- •Геометрический метод решения задач линейного программирования. Алгоритм решения.
- •Симплексный метод решения задач лп и его применение.
- •Алгоритм симплексного метода.
- •Анализ решения задачи по симплекс – таблице, отвечающей критерию оптимальности.
- •Транспортная задача. Постановка задачи.
- •Математическая модель транспортной задачи
- •Транспортная задача. Математическая модель двойственной задачи.
- •Алгоритм решения транспортных задач. Метод наименьшего элемента.
- •Алгоритм решения транспортных задач. Метод потенциалов.
- •Алгоритм решения транспортных задач. Метод северо-западного угла.
- •Графы. Основные понятия.
- •Построение эйлерова цикла.
- •Алгоритм построения эйлерова цикла
- •Остовное дерево
- •Алгоритм Краскала
- •Теория игр. Основные понятия
- •Антагонистические игры
- •Критерий Вальда
- •Критерий Гурвица
- •Критерий Сэвиджа
- •Критерий Лапласа
- •Критерий Байеса
Лицо принимающее решение (лпр), понятие статической и динамической задачи.
Все решения принимаются всегда на основе информации, которой располагает лицо принимающее решение (ЛПР).
Каждая задача в своей постановке должна отражать структуру и динамику знаний ЛПР о множестве допустимых решений и о показателе эффективности.
Задача называется статической, если принятие решения происходит в наперед известном и не изменяющемся информационном состоянии. Если информационное состояние в ходе принятия решения сменяют друг друга, то задача называется динамической.
Информационные состояния ЛПР могут по-разному характеризовать его физическое состояние:
Если информационное состояние состоит из единственного физического состояния, то задача называется определенной.
Если информационное состояние содержит несколько физических состояний и ЛПР кроме их множества знает еще и вероятности каждого из этих физических состояний, то задача называется стохастической (частично неопределенной).
Если информационное состояние содержит несколько физических состояний, но ЛПР кроме их множества ничего не знает о вероятности каждого из этих физических состояний, то задача называется неопределенной.
Постановка задач для принятия оптимальных решений.
Успешное применение методов принятия решений в значительной мере зависит от профессиональной подготовки специалиста, который должен иметь четкое представление о специфических особенностях изучаемой системы и уметь корректно поставить задачу. Можно сформулировать следующую последовательность действий, которые составляют содержание процесса постановки задачи:
установление границы подлежащей оптимизации системы, т.е. представление системы в виде некоторой изолированной части реального мира. Расширение границ системы повышает размерность и сложность многокомпонентной системы и, тем самым, затрудняет ее анализ.
определение показателя эффективности, на основе которого можно оценить характеристики системы или ее проекта с тем, чтобы выявить "наилучший" проект или множество "наилучших" условий функционирования системы. выбор внутрисистемных независимых переменных, которые должны адекватно описывать допустимые проекты или условия функционирования системы .
построение модели, которая описывает взаимосвязи между переменными задачи и отражает влияние независимых переменных на значение показателя эффективности.
Структура модели включает основные уравнения материальных и энергетических балансов, соотношения, связанные с проектными решениями, уравнения, описывающие физические процессы, протекающие в системе, неравенства, которые определяют область допустимых значений независимых переменных и устанавливают лимиты имеющихся ресурсов.
Элементы модели содержат всю информацию, которая обычно используется при расчете проекта. Процесс построения модели является весьма трудоемким и требует четкого понимания специфических особенностей рассматриваемой системы.
Все задачи принятия оптимальных решений можно классифицировать в соответствии с видом функций и размерностью и содержанием вектора x:
одноцелевое принятие решений - Wm(x) - скаляр;
многоцелевое принятие решений - Wm(x) - вектор;
принятие решений в условиях определенности - исходные данные - детерминированные;
принятие решений в условиях неопределенности - исходные данные - случайные.
Наиболее разработан и широко используется на практике аппарат одноцелевого принятия решений в условиях определенности, который получил название математического программирования.
После этого предварительного этапа следует, собственно, этап принятия решения. Но на нем процесс не заканчивается, т.к. обычно после принятия решения следует оценка результатов и корректировка действий. Таким образом, принятие решений следует воспринимать не как единовременный акт, а как последовательный процесс.