- •1. Порівняльне тестування сучасних відеоадаптерів 4
- •1. Порівняльне тестування сучасних відеоадаптерів
- •1.1 Основні типи графічних відеоадаптерів
- •1.2 Основні параметри відеоадаптерів
- •Будова відеокарти
- •1.3 Опис відео карти Asus Radeon r9 270
- •Дизайн і особливості відео карти Asus Radeon r9 270.
- •1.4 Опис відео карти Asus GeForce gtx 760
- •Порівняльна характеристика відеокарт
- •2. Прилади для налаштування моніторів
- •2.1. Типові несправності моніторів та способи їх усунення.
- •2.2 Використання тестера навантаження для виявлення несправностей моніторів
- •2.3 Використання осцилографа при тестуванні монітора
- •3. Охорона праці
- •Норми мікроклімату для приміщень з втд
- •Висновок
- •Список використаної літератури
1.2 Основні параметри відеоадаптерів
Сьогодні найпоширеніший тип моніторів - це CRT (Cathode Ray Tube) монітори. Як видно з назви, в основі всіх подібних моніторів лежить катодно-променева трубка, але це дослівний переклад, технічно правильно говорити електронно-променева трубка (ЕПТ) тоді CRT розшифровується і як Cathode Ray Terminal, що відповідає вже не самій трубці, а пристрою, на ній заснованому. Використовувана в цьому типі моніторів технологія була розроблена німецьким вченим Фердинандом Брауном в 1897р. і спочатку створювалася в якості спеціального інструменту для вимірювання змінного струму, тобто для осцилографа.
Для створення зображення в ЭЛТ-моніторі використовується електронна гармата, звідки під дією сильного електростатичного поля виходить потік електронів. Крізь металеву маску або грати вони потрапляють на внутрішню поверхню скляного екрану монітора, яка покрита різнокольоровими люмінофорними точками.
Потік електронів (промінь) може відхилятися у вертикальній і горизонтальній площині, що забезпечує послідовне попадання його на все поле екрану. Відхилення променя відбувається за допомогою відхиляючої системи. Відхилюючі системи підрозділяються на сідловидно-тороїдальні і сідловидні. Останні переважно більш вживані оскільки створюють знижений рівень випромінювання. Відхилююча система складається з декількох котушок індуктивності, розміщених біля горловини кінескопа. За допомогою змінного магнітного поля дві котушки створює відхилення пучка електронів в горизонтальній площині, а інші дві - у вертикальній. Зміна магнітного поля виникає під дією змінного струму, що протікає через котушки і змінюється по певному закону (це, як правило, пилкоподібна зміна напруги в часі), при цьому котушки додають променю потрібний напрям.
Для роботи сучасних офісних додатків і перегляду відеофільмів цілком вистачає 8 Мбайт відеопам’яті 800x600 або 16 Мбайт для дозволу 1024x768. Використання 32, 64 і 128 Мбайт відеопам'яті пов'язано, в першу чергу, з інтересами "ігроманів", яким навіть 128 Мбайт, чесно кажучи, не так вже й багато. Сегмент користувачів високоякісної графіки, який не пов'язаний з комп'ютерними іграми, зовсім не великий. Хоча, чим більше відеопам'яті, тим приємніше працювати за комп'ютером! Слід сказати, що стрімке збільшення об'єму відеопам'яті в даний час не пов'язано з таким же прогресом підвищення роздільної здатності зображення на екрані. Практично, вже досягнутий стеля для традиційних систем відображення відеоінформації.
Основна ж причина все більшого нарощування оперативної пам'яті відеоадаптера полягає в тому, що на платі відеоадаптера тепер знаходиться відеопроцесор, який може самостійно, за керуючим команд центрального процесора, будувати об'ємні зображення (вони ж - 3D), а це вимагає надзвичайно багато ресурсів для зберігання проміжних результатів обчислень і зразків текстур, якими заливаються умовні площині модельованих фігур.
Будова відеокарти
Відеокарта складається з чотирьох основних пристроїв: пам'яті, контролера, цифро-аналогового перетворювача (ЦАП, DAC) і відео-ПЗП.
Відеопам'ять потрібна для зберігання зображення. Від її об'єму залежить максимально можлива роздільна здатність відеокарта. Повну роздільну здатність відеокарта можна обчислити за формулою
ГхВхК,
де Г — кількість точок по горизонталі, В — по вертикалі, К — кількість можливих кольорів кожної точки. Наприклад, для роздільної здатності 640x480x16 досить 256 КБ, для 800x600x256 - 512 КБ, для 1024x768x65536 -2 МБ. Для зберігання кольорів виділяється певне ціле число двійкових розрядів, тому кількість кольорів завжди є ступенем двійки: 4 розряди — 16 кольорів, 8 розрядів — 256 кольорів, 16 розрядів — 65 536 кольорів (так званий режим High Color — високоякісне відтворення кольорів), 24 розряди — 16 777 216 кольорів (True Color — реалістичне відтворення кольорів).
Відеоконтролер відповідає за виведення зображення з відео пам’яті, відновлення її вмісту, формування сигналів для монітора (горизонтальної й вертикальної розгортки) і обробку запитів центрального процесора, що задає необхідний потік інформації для виведення. Деякі відеоконтролери є потоковими — їхня робота ґрунтується на створенні й змішуванні воєдино декількох потоків графічної інформації. Зазвичай це основне зображення, на яке накладається зображення апаратного курсору миші й окреме зображення у вікні операційної системи. Відеоконтролер із потоковою обробкою, а також з апаратною підтримкою деяких типових функцій, називається акселератором, або прискорювачем, і служить для розвантаження ЦП від рутинних операцій формування зображення.
ЦАП служить для перетворення потоку даних, формованих відеоконтролером, у рівні інтенсивності кольору, що подаються на монітор. Монітори використовують аналоговий відеосигнал, тому можливий діапазон кольоровості зображення визначається тільки параметрами ЦАП. Більшість ЦАП мають розрядність 8x3 — три канали основних кольорів (червоний, синій, зелений, RGB) по 256 рівнів яскравості на кожен колір, що в сумі дає 16,7 млн кольорів. Зазвичай ЦАП виконаний на одному кристалі з відеоконтролером.
Відео-ПЗП
Відео-ПЗП — постійний запам'ятовуючий пристрій, у який записані відео-BIOS, екранні шрифти, службові таблиці і т. ін. ПЗП не використовується відеоконтролером прямо — до нього звертається тільки центральний процесор, і в результаті виконання ним програм із ПЗП здійснюються звертання до відеоконтролера і відеопам'яті. ПЗП необхідний тільки для первісного запуску адаптера і роботи в режимі MS DOS; операційні системи з графічним інтерфейсом, наприклад Windows, не використовують ПЗП для управління адаптером.
Відео-ОП
Відеопам'ять - виступає у ролі своєрідного буфера обміну, до якого на деякий час поміщаються зображення, які виводяться на монітор, створюються та постійно змінюються графічним ядром. У цьому буфері також поміщаються елементи,що необхідні для формування цих зображень.
Об'єм пам'яті великої кількості сучасних відеокарт варіюється від 33 МБ (напр. Matrox G550 ) до 6 ГБ (напр. NVIDIA Quadro 6000). Оскільки доступ до відеопам'яті GPU і іншими електронним компонентами повинен забезпечувати бажану високу продуктивність всієї графічної підсистеми в цілому , використовуються спеціалізовані високошвидкісні типи пам'яті , такі як SGRAM , двопортові (англ. dual - port ) VRAM , WRAM , інші . Приблизно з 2003 року , відеопам'ять , як правило , базувалася на основі DDR технології пам'яті SDRAM , з подвоєною ефективною частотою (передача даних синхронізується не тільки по наростаючому фронту тактового сигналу , але і ниспадающему ) . І надалі DDR2 , GDDR3 , GDDR4 і GDDR5. Пікова швидкість передачі даних ( пропускна здатність ) пам'яті сучасних відеокарт досягає 327 ГБ / с ( напр. у NVIDIA GeForce GTX 590 або 320 ГБ / с у AMD Radeon ™ HD 6990 ) . Відеопам'ять використовується для тимчасового збереження , крім безпосередньо даних зображення , і інші: текстури , шейдери , вершинні буфери ( en : vertex buffer objects , VBO ) , Z- буфер (віддаленість елементів зображення в 3D графіці ) , і тому подібні дані графічної підсистеми ( за винятком , здебільшого даних Video BIOS , внутрішньої пам'яті графічного процесора і т. п. ) і коди .
Рис.1.2 Відеокарта ARCTIC Accelero TWIN TURBO II
