
- •Система уравнений Максвелла как обобщение опытных данных. Ток проводимости и ток смещения. Взаимные превращения электрических и магнитных полей.
- •Ток смещения.
- •Микроскопические носители электрических зарядов Классификация.
- •Электрон.
- •П ротон.
- •Нейтрон.
- •Спин и магнитный момент.
- •Элементарный заряд и его инвариантность.
- •Опыт Милликена.
- •Закон сохранения заряда
- •Интегральная формулировка закона сохранения заряда.
- •Закон Кулона. Теорема Гаусса. Закон Био-Савара. Закон Ампера. Закон индукции Фарадея.
- •Дифференциальная формулировка закона Кулона
- •Теорема Гауса
- •Закон Био-Савара Для тока текущего по контуру (тонкому проводнику)
- •Для распределенных токов
- •Следствия
- •Вывод из уравнений Максвелла
- •Закон ампера
- •Закон индукции Фарадея
- •Уравнения Максвела в вакууме в векторной дифференциальной и интегральной формах в гаусовой, Хевисайда-Лоренца и системе едениц си. Сила Лоренца
- •Гауссова система единиц. Взаимосвязь между значениями электрического заряда и тока в гауссовой системе единиц и в системе единиц си.
- •Система единиц си. Взаимосвязь между значениями электрического заряда и тока в гауссовой системе единиц и системе единиц си.
- •Производные единицы
- •Новое определение си
- •Уравнения Максвелла в среде в векторной дифференциальной и интегральной формах в гауссовой, Хевисайда-Лоренца и системе единиц си. Связь между векторами е,d, в,h. Сила Лоренца в среде.
- •Системы единиц измерения cгсе и cгcм в электродинамике. Связъ между электродинамическими величинами в cгсе и cгcм. Сгсэ
- •Энергия и импульс электромагнитного поля в среде. Установление их размерности в системе си
- •Установление размерности энергии и импульса электромагнитного поля в вакууме в гауссовой системе единиц.
- •Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме.
- •Уравнения Максвелла в вакууме в координатной форме в гауссовой системе единиц. Сила Лоренца в координатной форме.
- •15. Диалектрики. Свободные и связаные заряды. Связь вектора поляризации со связаными зарядами. Микроскопическое и макроскопическое поле в веществе. Механизмы поляризации
- •В постоянном поле в слабых полях
- •В сильных полях
- •В зависящем от времени поле
- •18. Закон Кулона и уравнения электростатики. Теорема Гаусса. Уравнения Лапласа и Пуассона.
- •19. Магнитная проницаемость и магнитная восприимчивость вещества. Материальное уравнение для векторов магнитного поля. Классификация магнетиков: диамагнетики, парамагнетики и ферромагнетики
- •Зависимость от температуры
- •Материальные уравнения
- •21. Электрический дипольный момент. Потенциал и напряженность поля электрического диполя в электростатике. Энергия электрического диполя во внешнем электрическом поле.
- •22.Магнитный дипольный момент. Векторный потенциал и напряженность поля магнитного диполя в статике. Энергия магнитного диполя во внешнем магнитном поле.
- •23.Вывод уравнения непрерывности для электрического тока. Интегральная формулировка закона сохранения электрического заряда.
- •7.3.1. Закон сохранения электрического заряда.
- •24.Экспериментальная проверка закона сохранения электрического заряда, релятивистской инвариантности электрического заряда, равенства абсолютных значений электрического заряда у протона и электрона.
- •25. Уравнения Максвелла в вакууме в векторной дифференциальной и интегральной формах в присутствии магнитных источников. Сила Лоренца для магнитного заряда.
- •29.Электромагнитные волны. Волновые уравнения для плоских и сферических волн. Скорость распространения электромагнитных волн.
- •31.Векторный и скалярный потенциалы. Градиентные (калибровочные) преобразования. Лоренцевская и кулоновская калибровки потенциалов.
- •32,34. Вывод волнового уравнения для векторного потенциала. Волновое уравнение для векторного потенциала в лоренцевской и кулоновской калибровках.
- •33.Инвариантность волнового уравнения для векторного потенциала относительно градиентных преобразований.
- •35. Инвариантность волнового уравнения для скалярного потенциала относительно градиентных преобразований. Волновое уравнение в лоренцевской и кулоновской калибровках.
- •Условия калибровки Лоренца и Кулона
- •39. Максвелловский тензор напряжений в вакууме и в среде. Инвариантность относительно дуальных преобразований.
- •40.Основные свойства уравнений Максвелла.
Закон Био-Савара Для тока текущего по контуру (тонкому проводнику)
Пусть
постоянный ток
течёт
по контуру (проводнику)
,
находящемуся в вакууме,
—
точка, в которой ищется (наблюдается)
поле, тогда индукция магнитного
поля в этой точке выражается интегралом
(в системе СИ)
где
квадратными скобками обозначено векторное
произведение, r -
положение точек контура
, dr -
вектор элемента контура, вдоль которого
идет проводник (ток течет вдоль него);
-
константа (магнитная
проницаемость вакуума);
-
единичный вектор, направленный от
источника к точке наблюдения.
В принципе контур может иметь ветвления, представляя собой сколь угодно сложную сеть. В таком случае под выражением, приведенным выше, следует понимать сумму по всем ветвям, слагаемое же для каждой ветви является интегралом приведенного выше вида (контур интегрирования для каждой ветви может быть при этом незамкнутым).
В случае простого (не ветвящегося) контура (и при выполнении условий магнитостатического приближения, подразумевающих отсутствие накопления зарядов), ток I одинаков на всех участках контура и может быть вынесен за знак интеграла. (Это справедливо отдельно и для каждого неразветвленного участка разветвленной цепи).
Если же взять за точку отсчёта точку, в которой нужно найти вектор магнитной индукции, то формула немного упрощается:
где
-
вектор описывающий кривую проводника
с током
,
-
модуль
,
-
вектор магнитной индукции, создаваемый
элементом проводника
.
Направление
перпендикулярно
плоскости, в которой лежат векторы
и
.
Направление вектора магнитной индукции
может быть найдено по правилу
правого винта:
направление вращения головки винта
дает направление
,
если поступательное движение буравчика
соответствует направлению тока в
элементе. Модуль вектора
определяется
выражением (в системе СИ)
Векторный потенциал даётся интегралом (в системе СИ)
Для распределенных токов
Для случая, когда источником магнитного поля являются распределенные токи, характеризуемые полем вектора плотности тока j, формула закона Био — Савара принимает вид (в системе СИ):
где j = j(r), dV - элемент объема, а интегрирование производится по всему пространству (или по всем его областям, где j≠0), r - соответствует текущей точке при интегрировании (положению элемента dV).
Векторный потенциал:
Следствия
Хотя в современном подходе, как правило, сам закон Био-Савара выступает следствием уравнений Максвелла, однако исторически его открытие предшествовало уравнениям Максвелла, поэтому уравнения Максвелла для случая магнитостатики можно рассматривать как следствия закона Био-Савара. С чисто формальной точки зрения в случае магнитостатики оба подхода можно считать равноправными, т.е. в этом смысле то, что из них считать исходными положениями, а что следствиями, зависит от выбора аксиоматизации, который в случае магнитостатики может быть тем или другим с равным формальным правом и практически равным удобством.
Основными следствиями закона Био-Савара являются (в указанном выше смысле) уравнения Максвелла для случая магнитостатики, в интегральной форме имеющие вид
-вариант теоремы Гаусса для магнитного поля (это уравнение остается в электродинамике неизменным и для общего случая)
и
- уравнение для циркуляции магнитного поля в магнитостатике (здесь дано для случая вакуума, в системе СИ). Эта формула (и вывод ее из закона Био-Савара) есть содержание теоремы Ампера о циркуляции магнитного поля.
Дифференциальная форма этих уравнений:
где j —
плотность тока (запись в системе СИ,
в гауссовой
системе единиц константа
вместо
принимает
вид
).