- •Система уравнений Максвелла как обобщение опытных данных. Ток проводимости и ток смещения. Взаимные превращения электрических и магнитных полей.
- •Ток смещения.
- •Микроскопические носители электрических зарядов Классификация.
- •Электрон.
- •П ротон.
- •Нейтрон.
- •Спин и магнитный момент.
- •Элементарный заряд и его инвариантность.
- •Опыт Милликена.
- •Закон сохранения заряда
- •Интегральная формулировка закона сохранения заряда.
- •Закон Кулона. Теорема Гаусса. Закон Био-Савара. Закон Ампера. Закон индукции Фарадея.
- •Дифференциальная формулировка закона Кулона
- •Теорема Гауса
- •Закон Био-Савара Для тока текущего по контуру (тонкому проводнику)
- •Для распределенных токов
- •Следствия
- •Вывод из уравнений Максвелла
- •Закон ампера
- •Закон индукции Фарадея
- •Уравнения Максвела в вакууме в векторной дифференциальной и интегральной формах в гаусовой, Хевисайда-Лоренца и системе едениц си. Сила Лоренца
- •Гауссова система единиц. Взаимосвязь между значениями электрического заряда и тока в гауссовой системе единиц и в системе единиц си.
- •Система единиц си. Взаимосвязь между значениями электрического заряда и тока в гауссовой системе единиц и системе единиц си.
- •Производные единицы
- •Новое определение си
- •Уравнения Максвелла в среде в векторной дифференциальной и интегральной формах в гауссовой, Хевисайда-Лоренца и системе единиц си. Связь между векторами е,d, в,h. Сила Лоренца в среде.
- •Системы единиц измерения cгсе и cгcм в электродинамике. Связъ между электродинамическими величинами в cгсе и cгcм. Сгсэ
- •Энергия и импульс электромагнитного поля в среде. Установление их размерности в системе си
- •Установление размерности энергии и импульса электромагнитного поля в вакууме в гауссовой системе единиц.
- •Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме.
- •Уравнения Максвелла в вакууме в координатной форме в гауссовой системе единиц. Сила Лоренца в координатной форме.
- •15. Диалектрики. Свободные и связаные заряды. Связь вектора поляризации со связаными зарядами. Микроскопическое и макроскопическое поле в веществе. Механизмы поляризации
- •В постоянном поле в слабых полях
- •В сильных полях
- •В зависящем от времени поле
- •18. Закон Кулона и уравнения электростатики. Теорема Гаусса. Уравнения Лапласа и Пуассона.
- •19. Магнитная проницаемость и магнитная восприимчивость вещества. Материальное уравнение для векторов магнитного поля. Классификация магнетиков: диамагнетики, парамагнетики и ферромагнетики
- •Зависимость от температуры
- •Материальные уравнения
- •21. Электрический дипольный момент. Потенциал и напряженность поля электрического диполя в электростатике. Энергия электрического диполя во внешнем электрическом поле.
- •22.Магнитный дипольный момент. Векторный потенциал и напряженность поля магнитного диполя в статике. Энергия магнитного диполя во внешнем магнитном поле.
- •23.Вывод уравнения непрерывности для электрического тока. Интегральная формулировка закона сохранения электрического заряда.
- •7.3.1. Закон сохранения электрического заряда.
- •24.Экспериментальная проверка закона сохранения электрического заряда, релятивистской инвариантности электрического заряда, равенства абсолютных значений электрического заряда у протона и электрона.
- •25. Уравнения Максвелла в вакууме в векторной дифференциальной и интегральной формах в присутствии магнитных источников. Сила Лоренца для магнитного заряда.
- •29.Электромагнитные волны. Волновые уравнения для плоских и сферических волн. Скорость распространения электромагнитных волн.
- •31.Векторный и скалярный потенциалы. Градиентные (калибровочные) преобразования. Лоренцевская и кулоновская калибровки потенциалов.
- •32,34. Вывод волнового уравнения для векторного потенциала. Волновое уравнение для векторного потенциала в лоренцевской и кулоновской калибровках.
- •33.Инвариантность волнового уравнения для векторного потенциала относительно градиентных преобразований.
- •35. Инвариантность волнового уравнения для скалярного потенциала относительно градиентных преобразований. Волновое уравнение в лоренцевской и кулоновской калибровках.
- •Условия калибровки Лоренца и Кулона
- •39. Максвелловский тензор напряжений в вакууме и в среде. Инвариантность относительно дуальных преобразований.
- •40.Основные свойства уравнений Максвелла.
7.3.1. Закон сохранения электрического заряда.
Закон сохранения электрического заряда неявно содержится в системе уравнений Максвелла. Действительно, вычислим величину дивергенции от правой и левой частей уравнения (7.2)
.
В векторном анализе известен результат (его можно проверить непосредственным вычислением!)
.
Поскольку операция вычисления дивергенции сводится к дифференцированию по пространственным координатам, то порядок вычисления частной производной по времени и вычисления дивергенции можно поменять местами, а если при этом воспользоваться уравнением (7.3), то получим
|
(7.13) |
- закон сохранения электрического заряда в дифференциальной форме (дивергентная форма). Интегральная форма этого закона имеет вид
|
(7.14) |
или в более привычной форме записи
|
(7.15) |
Физический смысл полученных интегральных соотношений: в фиксированном объеме величина электрического заряда может измениться только при наличии тока (т.е. движения электрических зарядов) через замкнутую поверхность, ограничивающую этот объем. Закон сохранения электрического заряда в дивергентной форме не содержит объемной плотности источников заряда. Отсюда следует, что в классической электродинамике электрический заряд не может возникнуть и не может исчезнуть.
24.Экспериментальная проверка закона сохранения электрического заряда, релятивистской инвариантности электрического заряда, равенства абсолютных значений электрического заряда у протона и электрона.
Экспериментальная проверка закона сохранения заряда в физике элементарных частиц основывается на проверке стабильности электрона и нулевой массы покоя фотона. На микроскопическом уровне это также прослеживается по ядерным реакциям. Частицы с электрическим зарядом могут рождаться или исчезать, но при этом исчезают или рождаются частицы с равным по величине, но обратным по знаку зарядом. Рождение новой заряженной частицы возможно лишь либо при одновременном исчезновении «старой» частицы с таким же зарядом, либо в паре с другой частицей, имеющей заряд противоположного знака (например, в процессе рождения пар частица-античастица). Например, в случае реакции аннигиляции электрона е- с отрицательным зарядом и позитрона е+ с положительным зарядом образуются два нейтральных фотона . При этом суммарный заряд до и после реакции равен нулю.
Релятивистская инвариантность электрического заряда.Фундаментальным свойством электрического заряда является его релятивистская инвариантность. Это свойство тесно связано с сохранением электрического заряда и означает в широком смысле, что в любой инерциальной системе отсчета полный электрический заряд сохраняется. Или в более узком смысле, что находящиеся в различных инерциальных системах наблюдатели, измеряя электрический заряд, получают одно и то же его значение. Таким образом, электрический заряд тела не зависит от того, движется тело или покоится.
Равенство зарядов электрона и протона вытикает из инвариатности и сохранения. Если у нас в теле одинаковое кол-во зарядов разного знака то оно электрически нейтрально. (это я сам)
