
- •Система уравнений Максвелла как обобщение опытных данных. Ток проводимости и ток смещения. Взаимные превращения электрических и магнитных полей.
- •Ток смещения.
- •Микроскопические носители электрических зарядов Классификация.
- •Электрон.
- •П ротон.
- •Нейтрон.
- •Спин и магнитный момент.
- •Элементарный заряд и его инвариантность.
- •Опыт Милликена.
- •Закон сохранения заряда
- •Интегральная формулировка закона сохранения заряда.
- •Закон Кулона. Теорема Гаусса. Закон Био-Савара. Закон Ампера. Закон индукции Фарадея.
- •Дифференциальная формулировка закона Кулона
- •Теорема Гауса
- •Закон Био-Савара Для тока текущего по контуру (тонкому проводнику)
- •Для распределенных токов
- •Следствия
- •Вывод из уравнений Максвелла
- •Закон ампера
- •Закон индукции Фарадея
- •Уравнения Максвела в вакууме в векторной дифференциальной и интегральной формах в гаусовой, Хевисайда-Лоренца и системе едениц си. Сила Лоренца
- •Гауссова система единиц. Взаимосвязь между значениями электрического заряда и тока в гауссовой системе единиц и в системе единиц си.
- •Система единиц си. Взаимосвязь между значениями электрического заряда и тока в гауссовой системе единиц и системе единиц си.
- •Производные единицы
- •Новое определение си
- •Уравнения Максвелла в среде в векторной дифференциальной и интегральной формах в гауссовой, Хевисайда-Лоренца и системе единиц си. Связь между векторами е,d, в,h. Сила Лоренца в среде.
- •Системы единиц измерения cгсе и cгcм в электродинамике. Связъ между электродинамическими величинами в cгсе и cгcм. Сгсэ
- •Энергия и импульс электромагнитного поля в среде. Установление их размерности в системе си
- •Установление размерности энергии и импульса электромагнитного поля в вакууме в гауссовой системе единиц.
- •Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме.
- •Уравнения Максвелла в вакууме в координатной форме в гауссовой системе единиц. Сила Лоренца в координатной форме.
- •15. Диалектрики. Свободные и связаные заряды. Связь вектора поляризации со связаными зарядами. Микроскопическое и макроскопическое поле в веществе. Механизмы поляризации
- •В постоянном поле в слабых полях
- •В сильных полях
- •В зависящем от времени поле
- •18. Закон Кулона и уравнения электростатики. Теорема Гаусса. Уравнения Лапласа и Пуассона.
- •19. Магнитная проницаемость и магнитная восприимчивость вещества. Материальное уравнение для векторов магнитного поля. Классификация магнетиков: диамагнетики, парамагнетики и ферромагнетики
- •Зависимость от температуры
- •Материальные уравнения
- •21. Электрический дипольный момент. Потенциал и напряженность поля электрического диполя в электростатике. Энергия электрического диполя во внешнем электрическом поле.
- •22.Магнитный дипольный момент. Векторный потенциал и напряженность поля магнитного диполя в статике. Энергия магнитного диполя во внешнем магнитном поле.
- •23.Вывод уравнения непрерывности для электрического тока. Интегральная формулировка закона сохранения электрического заряда.
- •7.3.1. Закон сохранения электрического заряда.
- •24.Экспериментальная проверка закона сохранения электрического заряда, релятивистской инвариантности электрического заряда, равенства абсолютных значений электрического заряда у протона и электрона.
- •25. Уравнения Максвелла в вакууме в векторной дифференциальной и интегральной формах в присутствии магнитных источников. Сила Лоренца для магнитного заряда.
- •29.Электромагнитные волны. Волновые уравнения для плоских и сферических волн. Скорость распространения электромагнитных волн.
- •31.Векторный и скалярный потенциалы. Градиентные (калибровочные) преобразования. Лоренцевская и кулоновская калибровки потенциалов.
- •32,34. Вывод волнового уравнения для векторного потенциала. Волновое уравнение для векторного потенциала в лоренцевской и кулоновской калибровках.
- •33.Инвариантность волнового уравнения для векторного потенциала относительно градиентных преобразований.
- •35. Инвариантность волнового уравнения для скалярного потенциала относительно градиентных преобразований. Волновое уравнение в лоренцевской и кулоновской калибровках.
- •Условия калибровки Лоренца и Кулона
- •39. Максвелловский тензор напряжений в вакууме и в среде. Инвариантность относительно дуальных преобразований.
- •40.Основные свойства уравнений Максвелла.
15. Диалектрики. Свободные и связаные заряды. Связь вектора поляризации со связаными зарядами. Микроскопическое и макроскопическое поле в веществе. Механизмы поляризации
Диэлектрик (изолятор) — вещество, плохо проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.
Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10−5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10−8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивлениеполупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10−5—108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбуждённым.
К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы, многие виды резины.
Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры исегнетомагнетики.
Свободные и связанные заряды.
При рассмотрении электростатического поля, в случае наличия в нем диэлектриков, нужно различать два рода электрических зарядов: свободные и связанные. Под свободными зарядами мы будем понимать, во-первых, все электрические заряды, которые под влиянием электрического поля могут перемещаться на макроскопические расстояния (электроны в металлах и вакууме, ионы в газах и электролитах и т. п.), и, во-вторых, заряды, нанесенные извне на поверхность диэлектриков и нарушающие их нейтральность ). Заряды же, входящие в состав нейтральных молекул диэлектриков, равно как и ионы, закрепленные в твердых диэлектриках вблизи определенных положений равновесия, мы будем называть зарядами связанными.
Потенциал ф электростатического поля при наличии в нем диэлектриков равен, очевидно, сумме потенциала (фо, возбуждаемого свободными зарядами, и потенциала (р', возбуждаемого связанными электрическими зарядами в диэлектриках:
Потенциал свободных зарядов определяется формулой (12.11):
где под р и а надо понимать объемную и поверхностную плотность свободных зарядов.
Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля. Внешнее поле создается системой свободных электрических зарядов. В диэлектрике существует электростатическое поле свободных зарядов и, дополнительно, электростатическое поле связанных зарядов. Результирующее поле в диэлектрике описывается вектором напряженности Е, и потому оно зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать перераспределение свободных зарядов, создающих поле. Вектор D характеризует электростатическое поле, создаваемое свободными зарядами, но при таком их распределении в пространстве, какое имеется при наличии диэлектрика. Поле D, как и поле Е, изображается с помощью силовых линий вектора электрического смещения, направление и густота которых определяются точно так же, как и для линий вектора напряженности. Линии вектора Е могут начинаться и заканчиваться на любых зарядах - свободных и связанных, в то время как линии вектора D - только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.
Связь вектора поляризации со связаными зарядами
ρb = - ∆(перевернуть) P(СИ и СГС )
оляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.
Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.
Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).
Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.
Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает всегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.
Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле с напряженностью Е1, направленное против внешнего поля с напряженностью Е0. Результирующая напряженность поля Е внутри диэлектрика Е=Е0-Е1.
В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:
Электронная — смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10−15 с). Не связана с потерями. сен мал
Ионная — смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10−13 с, без потерь.
Дипольная (Ориентационная) — протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.
Электронно-релаксационная — ориентация дефектных электронов во внешнем электрическом поле.
Ионно-релаксационная — смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.
Структурная — ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.
Самопроизвольная (спонтанная) — благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10−2)
Резонансная — ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.
Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.
Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты. В связи с этим вводится понятие дисперсии диэлектрической проницаемости.