
- •Перелік умовних позначень
- •1. Розвиток бурової справи на україні
- •1.1. Мета і завдання курсу
- •1.2. Розвиток бурової справи на Україні
- •2. Класифікація свердловин за призначенням. Конструкція свердловин
- •2.1. Класифікація свердловин
- •2.2. Конструкція свердловин
- •3. Основні складові та техніко-економічні показники будівництва свердловин
- •3.1. Основні складові процесу будівництва свердловин
- •3.2. Основні техніко-економічні показники будівництва свердловин
- •4. Способи і режимибуріння свердловин
- •4.1. Способи буріння свердловин
- •4.2. Режими буріння свердловин
- •5. Фізико-механічні властивості гірських порід
- •5.1. Загальні відомості про гірські породи.
- •5.2.Фізико-механічні властивості гірських порід
- •6. Породоруйнуючий інструмент
- •6.1. Призначення та класифікація породоруйнуючих інструментів
- •6.4. Бурові долота спеціального призначення
- •7. Промивання свердловин
- •7.1. Функції промивальної рідини та вимоги до неї
- •7.3. Властивості промивальних рідин
- •8. Бурильна колона
- •8.1. Умови роботи бурильної колони
- •8.2. Конструктивні особливості елементів бурильної колони
- •8.2.1. Бурильні труби та з'єднуючі муфти
- •8.2.2. Бурильні замки
- •8.2.3. Обважнені бурильні труби
- •8.2.4. Ведучі бурильні труби
- •8.2.5. Перехідники
- •8.3. Технологічне оснащення бурильної колони
- •9. Кріплення свердловин
- •9.1. Мета і способи кріплення свердловин
- •9.2. Обсадні труби та їх з’єднання
- •9.3. Оснащення обсадних колон
- •10 Цементування свердловин
- •10.1. Мета цементування свердловин
- •10.2. Способи первинного цементування
- •10.2.1. Одноступінчасте цементування
- •10.3. Тампонажні матеріали
- •10.3.1. Призначення тампонажних матеріалів та вимоги до них
- •10.3.2. Класифікація тампонажних матеріалів
- •11 Первинне розкриття та випробування продуктивних пластів
- •11.1. Способи первинного розкриття продуктивних пластів
- •11.2. Суть, способи та задачі випробування перспективних горизонтів
- •12 Умови залягання покладів вуглеводнів. Елементи фізики нафтового пласта
- •12.1. Умови залягання покладів вуглеводнів
- •12.2. Колекторські властивості теригенних (уламкових) гірських порід
- •12.3. Колекторські властивості карбонатних (тріщинуватих) порід
- •13 Режими роботи нафтових і газових покладів
- •13.1. Джерела і характеристики пластової енергії
- •13.2. Режими роботи нафтових і газових покладів
- •13.3. Нафтовилучення із пластів
- •14. Освоєння і дослідження свердловин
- •14.1. Освоєння свердловин
- •14.2. Методи дослідження пластів і продуктивності свердловин
- •14.3. Дослідження нафтових свердловин на приплив при сталому режимі
- •15. Системи розробки нафтових і газових родовищ
- •15.1. Виділення експлуатаційних об’єктів
- •15.2. Системи розробки багатопластових родовищ
- •15.3. Системи розробки експлуатаційних об’єктів (покладів)
- •16. Методи підвищення нафто- і газовіддачі пластів
- •16.1. Фактори, що впливають на повноту вилучення нафти й газу з покладів
- •16.2. Методи збільшення нафтовіддачі пластів
- •16.3. Газо- і конденсатовіддача газових і газоконденсатних покладів
- •17. Способи експлуатації нафтових і газових свердловин
- •17.1. Фонтанна і газліфтна експлуатація свердловин
- •17.1.1. Способи підйому нафти на поверхню
- •17.1.2. Зміна тисків по глибині свердловин при різних способах експлуатації
- •17.1.3. Обладнання свердловин
- •17.1.4. Газліфтна експлуатація свердловин і застосовуване обладнання
- •17.2. Експлуатація свердловин глибинонасосними установками
- •17.2.1. Устрій та обладнання штангових насосних установок
- •17.2.2. Експлуатація свердловин заглибленими відцентровими електронасосами
- •17.2.3. Інші види безштангових насосів, що застосовуються при експлуатації нафтових свердловин
- •17.3. Вибір раціонального способу експлуатації свердловин
- •17.4. Обладнання та експлуатація газових свердловин
- •17.4.1. |Конструкція свердловин
- •17.4.2. Режим експлуатації газових свердловин
- •18. Методи підвищення продуктивності свердловин
- •18.1.Кислотна обробка пласта
- •18.2. Гідравлічний розрив пластів
- •18.3. Гідропіскоструминна перфорація
- •18.4. Теплофізичні методи впливу
- •18.5. Імпульсно-ударний і вібраційний вплив
- •19. Боротьба з ускладненнями при експлуатації нафтових і газових свердловин. Підземний ремонт свердловин
- •19.1. Боротьба з ускладненнями при експлуатації нафтових і газових свердловин
- •19.2. Ремонт свердловин
- •Термінологічний словник
- •Список літератури
- •36011, М. Полтава, просп. Першотравневий, 24
17.1.2. Зміна тисків по глибині свердловин при різних способах експлуатації
Артезіанські свердловини. Такі свердловини фонтанують, коли пластовий тиск більший гідростатичного тиску стовпа рідини у свердловині, тобто
,
де ρр – густина рідини. При сталому режимі експлуатації свердловини вибійний тиск визначають за рівнянням припливу залежно від дебіту свердловини Q. При лінійній фільтрації
,
де К – коефіцієнт продуктивності свердловини. Вибійний тиск компенсує гідростатичний тиск стовпа рідини, втрати на тертя при її русі і тиск на гирлі, необхідний для транспортування продукції:
.
(17.1)
Втрати тиску на тертя при русі рідини по трубах розраховують за рівнянням Дарсі-Вейсбаха
,
д
е
λ
– коефіцієнт гідравлічного опору; d
– внутрішній діаметр труб. Так як ці
втрати пропорційні довжині труби при
турбулентному і ламінарному режимах
течії, рівняння (17.1) – лінійна функція
тиску р
відносно глибини свердловини Н
(рис. 17.1).
Фонтанні нафтові свердловини. Фонтанування таких свердловин може відбуватися і при пластовому тиску, меншому, від гідростатичного тиску стовпа рідини у свердловині. Це обумовлено великою кількістю розчиненого у нафті газу. Зі зниженням тиску під час підйому продукції свердловини у колоні насосно-компресорних труб (НКТ) виділяється розчинений газ і утворюється газорідинна суміш з густиною ρс (ρс ˂ ρр).
Рис. 17.1. Залежність тиску від глибини свердловини Н при дебітах Q2 ˃ Q1
Умова фонтанування нафтової свердловини:
.
(17.2)
Рівняння балансу тиску має вигляд
,
(17.3)
де ρс – середня густина суміші вздовж колони НКТ.
На рис. 17.2 показані криві зміни тиску з глибиною у фонтанних свердловинах. На ділянці від вибою до точки, де тиск дорівнює тиску насичення рн, рухається однорідна рідина, тому тиск змінюється за лінійним законом. При зниженні тиску нижче рн з розчину починає виділятися газ і утворюється газорідинна суміш. Чим менший тиск при наближенні до гирла свердловини, тим більше виділиться газу, а газ, що раніше виділився – розшириться, внаслідок чого стануть меншими густина суміші і градієнт тиску. При цьому тиск уздовж ліфта при русі газорідинної суміші змінюється по нелінійному закону. Якщо вибійний тиск менший за тиск насичення, то нелінійність зазначеної залежності р = f(H) спостерігатиметься по всій глибині свердловини. За рахунок зміни втрат на тертя закономірність зміни тиску буде складнішою, ніж на рис. 17.2.
О
тже,
кількість вільного газу в суміші вздовж
стовбура свердловини збільшується в
міру наближення до гирла, відповідно
змінюється і густина суміші. Тому у
формулах (17.2) і (17.3) прийнята середня
густина суміші
ρс,
що відповідає середньому об’єм газу,
який виділився, що припадає на одиницю
маси або об’єму рідини.
Рис. 17.2. Криві зміни тиску з глибиною у фонтанній свердловині при дебіті Q2 ˃ Q1
Механізовані свердловини. При розробці родовища енергія на вибої зменшується внаслідок падіння пластового тиску або обводнення свердловини. Тоді для підтримки дебіту свердловини постійним необхідно знижувати вибійний тиск. Розглянемо криві р = f(Н) на рис. 17.2 (вони зміщуються вліво). Тиск на гирлі падає, що може стати недостатнім для транспортування продукції свердловини до збірного пункту.
У процесі обводнення свердловини збільшується густина рідини і зменшується кількість газу, який надходить у свердловину. Якщо рв > рн, практично увесь газ виділяється із нафти, а у воді його вміст дуже малий. У результаті із зростанням обводнення зменшується кількість газу в суміші і збільшується її густина. Градієнт тиску зростає, і при одному й тому ж вибійному тиску це призводить до необхідності зменшення гирлового тиску.
Настає момент, коли рівність (17.3) не може бути виконаною і тоді необхідне підведення додаткової енергії – енергії стисненого газу або механічної енергії насоса.
На рис. 17.3 а і б показані криві зміни тиску у газліфтній та насосній свердловинах.
При газліфтному способі експлуатації для зменшення густини газорідинної суміші на глибині L, у продукцію нагнітають додаткову кількість вільного газу. У результаті під впливом вибійного тиску рв забезпечується підйом більш легкої суміші і створюються умови, необхідні для транспортування продукції.
При насосному способі експлуатації на глибину L спускають насос, тиск на викиді якого рв.н. достатній для підйому продукції свердловини.