
- •1. Область применения и номенклатура мк
- •2Достоинства и недостатки мк.
- •3. Основные принципы современного проектирования мк.
- •4. Организация проектирования мк
- •5. Механические свойства стали
- •6. Диаграмма растяжения малоуглеродистой стали.
- •7.Виды строительных сталей.
- •8.Структура низколегированных сталей. Основные химические элементы, применяемые при легировании.
- •10.Виды термических воздействий и их влияния на свойства строительных сталей.
- •11.Кипящие, полуспокойные и спокойные стали.
- •12.Атмосферостойкие стали.
- •13.Факторы, влияющие на выбор марок сталей.
- •14.Группы стальных конструкций, зависящих от условий работы материала.
- •15.Алюминий, его физико-механические свойства.
- •16.Виды полуфабрикатов из алюминиевых сплавов
- •17.Легированные и многокомпонентные алюминиевые сплавы.
- •18.Достоинства и недостатки алюминиевых сплавов, область применения.
- •19.Требования, предъявляемые к металлическим конструкциям.
- •20.Расчет по допускаемым напряжениям. Основные принципы метода.
- •21.Методы расчета по предельным состояниям. Определения, виды предельных состояний.
- •22. Первая группа предельных состояний
- •23. Нагрузки и воздействия, используемые при расчете по предельным состояниям.
- •24.Нормативные и расчетные сопротивления.
- •25.Вторая группа предельных состояний.
- •26.Сортамент – сталь листовая.
- •27.Сортамент – уголки и швеллеры.
- •28.Сортамент – двутавры.
- •29.Сортамент – тонкостенные профили.
- •30.Сортамент – профили из алюминиевых сплавов.
- •31.Виды сварки, технология, область использования.
- •32.Виды сварных соединений.
- •33.Сварные швы.
- •34.Работа и расчет сварных соединений, выполненных угловыми швами.
- •35.Работа и расчет сварных соединений, выполненных стыковыми швами
- •36. Общие конструктивные требования к сварным соединениям.
- •37.Виды болтов, область их использования.
- •38.Понятия о заклепочных соединениях.
- •39.Соединения на высокопрочных болтах.
- •40 .Расчет центрально растянутых элементов. Расчет изгибаемых элементов в пределах упругости
- •41.Работа изгибаемых элементов с учетом развития пластических деформаций.
- •42.Проверка общей устойчивости изгибаемых элементов.
- •43.Расчет элементов стальных конструкций на центральное сжатие
- •44.Типы балок, их статические схемы.
- •45.Виды балочных клеток.
- •46.Монтажные стыки балок.
- •47.Узлы опирания балок на оголовки колонн.
- •48. Шарнирное примыкание балок к колоннам сбоку.
- •50.Узлы крепления балок к балкам.
- •51.Виды стальных колонн. Компоновка поперечного сечения стержня колонн.
- •52.Основы расчета колонн.
- •53.Базы одноветвевых колонн.
- •54.Конструкции оголовков колонн.
- •55.Рамы. Статические схемы
- •56.Решения карнизных узлов рам.
- •57.Решения коньковых и опорных узлов рам.
- •59.Способы восприятия распора арок.
- •60,Примеры использования большепролетных стальных арок
- •61.Системы ферм и область их применения в строительных конструкциях.
- •62.Очертание ферм и их генеральные размеры.
- •63.Системы решеток ферм и их характеристика, панели ферм.
- •64.Устойчивость ферм. Связи.
- •65.Унификация и модулирование геометрических размеров ферм.
28.Сортамент – двутавры.
Двутавры — основной балочный профиль — имеют наибольшее разнообразие по типам ,которые соответствуют определен-ным областям применения.
Балки двутавровые обыкновенные. (ГОСТ 8239—72 с изм.) так же, как и швеллеры имеют уклон внутренних граней полок и обозначаются номером, соответствующим их высоте в сантиметрах .В сор-тамент входят профили от № 10 до № 60 (см. прил. 14, табл. 1). Стенки у крупных двутавров имеют минимальную толщину, по условиям устойчивости достигают1/55 высоты двутавра. Чем тоньше стенка, тем выгоднее сечение балки при работе ее на изгиб. Однако по условиям технологии прокатки у большинства двутавров стенки получаются значительно толще, чем это требуется по условию их устойчивости.Двутавры применяются в изгибаемых элементах (балках), а также в ветвях решетчатых колонн и различных опор.
Балки двутавровые широкополочные имеют параллельные грани полок Широкополочные двутавры прокатываются трех типов: нормальные двутавры (Б), широкополочные двутавры (Ш), колонные двутавры (К). Высота балочных профилей (Б) и (Ш) достигает 1000 мм при отношениях ширины полок к высоте от b : h— 1 : 1,65 (при малых высотах) до Ь : h = 1:1,25 (при больших высотах). Колонные профили (К) имеют отношение ширины полок к высоте, близкое 1:1.
Конструктивные преимущества (параллельность граней полок и мощность сечений) позволяют применять широкополочные двутавры в виде самостоятельного элемента (балки, колонны, стержни тяжелых ферм), не требующего почти никакой обработки, что снижает трудоем-кость изготовления конструкций в 2—3 раза.
Из широкополочных двутавров путем разрезки полки в продольном направлении получают тавровые профили ,удобные для применения в решетчатых конструкциях. По мере расширения произв-ва широкополочных двутавров применение обыкновенных двутавров сокращается.
Развитие автоматической сварки создает благоприятные условия для производства сварных двутавров из универсальной стали по определенному сортаменту, что дает возможность пользоваться ими так же, как и прокатными.
29.Сортамент – тонкостенные профили.
Тонкостенные двутавры (ТУ 14-2-205-76) и швеллеры (ТУ 14-2-204-76) прокатываются на непрерывном станке с особо тонкими стенками и полками, что делает их экономичнее обычных прокатных профилей на 14—20 %. Тонкостенные профили имеют высоту от 120 до 300 мм и полки с параллельными гранями. Применяются тонкостенные профили в балках площадок, фахверках, в легких перекрытиях и покрытиях.
30.Сортамент – профили из алюминиевых сплавов.
Строительные профили из алюминиевых сплавов (рис. 4.4) получают прокаткой, прессованием или литьем. Листы, ленты и плиты прокатываются в горячем или холодном состоянии. Листы прокатывают толщиной до 10,5 мм, шириной до 2000 мм и длиной до 7 м. Фасонные профили, в том числе и полые (трубчатые), изготовляют горячим прессованием на гидравлических прессах.
Продавливая слитки через матрицы различных типов, можно получить профили разнообразных поперечных сечений (см. рис. 4.4). Это существенное преимущество позволяет конструктору использовать наиболее эффективные формы сечений. Возможность получить профили практически любых сечений в некоторой степени компенсирует малую устойчивость стержней из алюминиевых сплавов из-за низкого модуля упругости материала.
Однако габариты поперечного сечения профиля ограничиваются поперечными размерами матрицы и усилием, развиваемым прессом.
Рис. 4.4 Типы профилей из алюминиевых сплавов
Наиболее распространенное на заводах оборудование требует, чтобы профили вписывались в круг диаметром 320 мм (в отдельных случаях 530 мм). На современном прессовом оборудовании можно изготовлять профили площадью сечения от 0,5 до 300 см2. Гнугые профили изготовляют из листов и лент толщиной до 4 мм гнутьем их в холодном состоянии. Из-за низкого модуля упругости алюминиевых сплавов ширина свободного свеса полос и высота стенок профилей но отношению к их толщинам принимаются более ограниченными, чем в стальных профилях. Для большего развития сечения и повышения устойчивости стержня профили изготовляются с бульбами на концах полок (см. рис. 4.4,6), которые позволяют доводить отношение ширины полки к ее толщине от 9,5 до 21 Несмотря на возможности получения разнообразных профилей, основные профили объединены в сортаменты, приведенные в каталогах ВИЛС (Всесоюзный институт легких сплавов), которыми следует пользоваться при проектировании.
Круглые тянутые трубы поставляются с наружным диаметром до 150 мм при толщине стенки 1,5—6 мм. Кроме круглых труб поставляют квадратные, прямоугольные и каплевидные (см. рис. 4.4, в).