
- •Введение
- •В1. Исходные понятия
- •Первый вопрос, возникающий у студентов при появлении новой дисциплины – а зачем нам это нужно? Давайте попытаемся ответить на него в отношении дисциплины «Основы теории управления».
- •В2. Краткая история развития теории управления
- •1. Общие сведения о системах автоматического управления
- •1.1. Основные понятия системотехники
- •1.2. Понятие управления
- •1.3. Классификация систем управления
- •Параметрических возмущений
- •С информационной огибающей (в)
- •1.4. Задачи и математические модели систем управления
- •1.4.1. Задачи теории управления
- •1.4.2. Понятие о математических моделях систем управления
- •1.4.3. Способы построения моделей
- •2. Математический аппарат анализа и синтеза линейных непрерывных систем управления
- •2.1. Математические средства описания систем управления
- •2.2. Средства описания моделей систем в функциональном пространстве
- •2.2.1. Дифференциальные уравнения
- •Общая форма записи системы дифференциальных уравнений может быть представлена в виде
- •2.2.2. Передаточные функции
- •2.2.3. Временные характеристики
- •Тестовые сигналы
- •2.2.4. Частотные характеристики
- •2.1.5. Полнота характеристик
- •2.3. Средства описания моделей систем управления
- •2.3.1. Дифференциальные уравнения в форме Коши
- •2.4. Линейные модели систем управления
- •2.4.1. Понятие линеаризации моделей
- •2.4.2. Модели «вход-выход»
- •2.4.3. Модели с раскрытой структурой
- •2.4.4. Модели в виде сигнальных графов (графов Мейсона)
- •3. Структурные методы теории автоматического управления
- •3.1. Понятие структуризации
- •3.2. Преобразования структурных схем
- •3.3. Передаточные функции систем
- •3.4. Типовые звенья систем управления
- •Типовые звенья нулевого порядка и их передаточные характеристики
- •Типовые звенья первого порядка и их передаточные характеристики
- •Типовые звенья второго порядка и их передаточные характеристики
- •3.4.2. Элементарные звенья
- •Элементарного усилительного звена
- •Элементарного усилительного звена
- •Элементарного усилительного звена
- •Элементарного звена чистого запаздывания
- •А − в комплексной плоскости, б − в действительном пространстве
- •Элементарного звена чистого запаздывания
- •Идеального дифференцирующего звена
- •Элементарного интегрирующего звена
- •Элементарного интегрирующего звена
- •Элементарного интегрирующего звена
- •Типового дифференцирующего звена
- •Частотные характеристики типового дифференцирующего звена
- •Интегрирующего звена
- •Апериодического звена
- •Форсирующего звена
- •Реального дифференцирующего звена
- •Реального дифференцирующего звена
- •Реального дифференцирующего звена
- •Реального дифференцирующего звена
- •Реального дифференцирующего звена
- •Реального интегрирующего звена
- •Реального интегрирующего звена
- •4. Основные свойства систем управления
- •4.1. Основные требования к системам управления
- •4.2. Устойчивость систем управления
- •Устойчивой (а), нейтральной (б) и неустойчивой (в)
- •От вида корней характеристического полинома
- •Некоторые координаты отображения единичного квадрата с помощью функции
- •Некоторые координаты отображения единичного квадрата с помощью функции
- •Для устойчивых (а) и неустойчивых (б) систем
- •4.3. Инвариантность (робастность) систем управления
- •4.4. Чувствительность систем управления
- •4.5. Показатели качества систем управления
- •5. Синтез линейных систем управления
- •5.1.Основные понятия
- •5.2. Постановка задачи синтеза одноканальных систем
- •5.3. Условия разрешимости задачи синтеза
- •5.4. Частотный метод синтеза
- •5.5. Модальный метод синтеза
- •Литература
1.4.3. Способы построения моделей
В зависимости от характера и объема априорной информации выделяют два способа построения моделей объектов и систем управления:
− аналитический;
− экспериментальный.
Аналитический способ применяется для построения моделей объектов хорошо изученной природы. В этом случае имеется вся необходимая информация, но она представлена в иной форме. Реализуемые при этом модели представляются в виде схем с сосредоточенными параметрами (компонентами). На таких моделях базируются, например, теоретическая механика и теоретическая электротехника.
Методы теории управления абстрагируются от конкретной природы объектов и оперируют более абстрактными – математическими (символьными) моделями.
Аналитический способ моделирования состоит из двух основных этапов:
− построения схемы объекта;
− построение математического описания схемы в требуемой форме.
При этом принципиальные проблемы моделирования решаются на первом (неформальном) этапе, а второй является процедурой преобразования форм представления моделей. Это позволяет разработать и использовать различные компьютерные программы автоматизации составления уравнений по схемам.
Экспериментальный способ применяется, когда свойства объекта изучены в недостаточной степени, либо слишком сложны для аналитического описания. Он заключается в активных экспериментах над объектом или пассивной регистрации его поведения в режиме нормальной эксплуатации (рис. 1.19, а).
Рис. 1.19. Экспериментальное исследование (а) и модель «вход-выход» (б)
В результате обработки данных наблюдений получают модели в требуемой форме. Совокупность этих операций носит название «идентификация объекта». В результате идентификации получают модели «вход-выход» (рис. 1.19, б). Очевидно, что получаемая модель зависит не только от свойств объекта, но и от разнообразия входных сигналов.
Поскольку объект на практике не является «черным ящиком», т.е. о нем что-то известно, то есть возможность комбинировать оба способа: вначале аналитически строить структуру модели и определять приближенные значения параметров, а затем обработкой экспериментальных данных уточнять эти значения.
Используются три основных класса структур моделей систем управления:
− вход-выход;
– с причинно-следственной структурой;
– иерархические.
Модели «вход-выход» отображают зависимость поведения системы от входных воздействий при целостном представлении системы (в виде «черного ящика»). Внутренние переменные (переменные состояния) в них выражаются через входные и выходные переменные.
При построении модели системы с раскрытой причинно-следственной структурой объект или систему предварительно расчленяют на элементы направленного действия и рассматривают их как преобразователи сигналов. Элементы выделяются по функциональному признаку: объект управления, измерительные, преобразовательные и усилительные элементы, устройство управления, исполнительный механизм и т.д. Для каждой части строится своя модель, соединением которых, в соответствии с соединением элементов образуется модель системы. Принципиальной трудностью является создание таких моделей систем с контурами: не зная свойств частей, нельзя знать сигналы на входах этих частей, а без этого нельзя идентифицировать сами части.
В иерархическом представлении структурные модели систем представляются уровнями иерархии (интеграции). При этом модели «вход-выход» являются моделями нулевого уровня причинно-следственной интеграции. Разделение модели «вход-выход» на подсистемы приводит к первому уровню причинно-следственной интеграции и т.д. Дальнейшее раскрытие структур подсистем, каждая из которых снова рассматривается как модель «вход-выход», приводит к многоуровневым (иерархическим) моделям. Часто иерархический подход является единственно возможным для проектирования сложных систем. При этом предполагается, что поведение подсистемы L-го уровня полностью объясняется свойствами подсистем непосредственно нижележащего L-1-го уровня.
Модели среды. Среда на входе системы моделируется автономными системами двух типов:
− генераторами типовых воздействий;
− преобразователями типовых воздействий (фильтрами).
В качестве типовых воздействий используются единичные импульсная и ступенчатая функции, «белый шум». Часто используются также случайные входные воздействия. Некоторые из этих воздействий будут рассмотрены далее.
Детальному исследованию перечисленных типов моделей должно предшествовать рассмотрение математического аппарата, применяемого при исследовании моделей. Поэтому рассмотрим математические средства, применяемые при описании систем управления.