
- •1.Принципы классификация режимов пуска. Общая характеристика.
- •2. Блочный пуск. Общая характеристика. Ограничения. Преимущества и недостатки.
- •1.Блочный пуск – одновременный (совмещенный) пуск котельного агрегата и турбины и их вспомогательного оборудования, выделенных в отдельную технологическую схему;
- •3. Классификация режимов пуска, Дубль блочный пуск. Ограничения. Преимущества и недостатки.
- •1.Блочный пуск – одновременный (совмещенный) пуск котельного агрегата и турбины и их вспомогательного оборудования, выделенных в отдельную технологическую схему;
- •4. Особенности пуска турбин на станциях с поперечными связями от общестанционной магистрали. Проблемы, ограничения
- •5. Особенности пуска котла на станциях с поперечными связями. Пуск на общестанционную магистраль. Проблемы, ограничения, преимущества и недостатки
- •6. Пусковые схемы и их назначение. Общая характеристика.
- •7. Однобайпасная пусковая схема и ее модификации. Условия их применения, преимущества и недостатки.
- •8. Двухбайпасная пусковая схема и ее модификации. Условия их применения, преимущества и недостатки.
- •9. Комбинированная пусковая схема и ее модификации. Условия их применения, преимущества и недостатки.
- •10. Встроенная задвижка в пусковую схему котла. Полнопроходной сепаратор пусковой схемы. Преимущества и недостатки.
- •11. Основные этапы пуска. Операции при пуске энергоблока. Контроль основных параметров и допустимые пределы изменений. Основные технологические этапы пуска
- •Толчок ротора и разворот турбины
- •Нагружение энергоблока
- •13. Двухбайпасные пусковые схем. Технология пуска энергоблока с использованием двухбайпасной пусковой схемы. Преимущества и недостатки.
- •14. Особенности пуска барабанного котла. Технологические операции и основные ограничения. Пуска барабанных котлов на общестанционную магистраль.
- •15. Пуски турбин с противодавлением. Особенности пуска и технология пуска.
- •16. Совершенствование пусковых схем турбин с противодавлением (типа-р). Технологические операции, преимущества и недостатки.
- •17. Совершенствование пусковых схем турбин с промышленным отбором пара (типа-пт). Технологические операции, преимущества и недостатки
- •18. Совершенствование пусковых схем и технологии пуска на энергоблоках с промперегревом и однобайпасной пусковой схемой.
- •Технология пуска блока мощностью 200 мВт из горячего состояния (после простоя 6-8 ч) по предлагаемой схеме.
- •19. Нормативные (типовые) графики пусков. График-задание пуска блока из холодного состояния. Продолжительность этапов пуска энергоблоков. Основные факторы, определяющие продолжительность этапов пуска.
- •20. Нормативные (типовые) графики пусков. График-задание пуска блока из горячего состояния. Продолжительность этапов пуска энергоблоков. Основные факторы, определяющие продолжительность этапов пуска
- •21. Дополнительные затраты топлива на пуск. Потери топлива, тепла и электроэнергии на этапах пуска. Основные факторы определяющие потери топлива на пуск
- •23. Прохождение провалов графика нагрузки. Использование режимов останова и последующего пуска для прохождения провалов нагрузки. Ограничения, преимущества, недостатки, экономичность
- •24. Прохождение провала нагрузки с использованием моторного режима. Технология использования, преимущества и недостатки. Технологические схемы перевода турбоагрегата в моторный режим.
- •25. Затраты топлива на поддержание турбоагрегата в моторном режиме.
- •26. Прохождение провала нагрузки, с использованием режима горячего вращающегося резерва, технология перевода, преимущества и недостатки. Затраты топлива на поддержание гвр.
- •28. Снижение начальных параметров, как вынужденный способ снижения электрической мощности.
- •30. Привлечение теплофикационных турбин к прохождению провалов нагрузки, путем передачи тепловой нагрузки на пиковые бойлера при сохранении отпуска тепла от станции. Технологические схемы.
- •31. Режим обвода цвд на теплофикационных турбинах, как способ прохождения провала нагрузки. Преимущества, недостатки. Технологические схемы реализации.
- •33. Привлечение теплофикационных агрегатов с промперегревом, для прохождения провала нагрузки, путем частичного обвода цвд
- •34. Повышение вакуума в конденсаторе, как способ получения дополнительной мощности и снятия ограничений.
- •36. Прохождение пиковой части графика нагрузки с использованием режимов отключения пвд. Технология реализации, основные ограничения, преимущества и недостатки. Эффективность использования.
- •38. Выравнивание графиков нагрузки как средство оптимизации режимов работы. Выравнивание графика нагрузки у потребителя. Заинтересованность потребителя в условиях рынка.
- •40. Оптимизация режимов работы электростанций с использованием аккумуляторов тепла (аккумуляторы питательной воды). Принципы работы, основные проблемы и ограничения. Эффективность аккумулирования.
- •Недостатки аккумуляторов питательной воды:
- •41. Аккумуляторы фазового перехода и их использование для оптимизации режимов работы тэс и аэс.
- •42. Расширение регулировочного диапазона тэц за счет использования аккумуляторов сетевой воды.
- •43. Использование гаэс для выравнивания графика нагрузки. Основные принципы работы гаэс. Эффективность выбора площадки и эффективность гаэс.
- •44. Понятие кпд гаэс. Оценка эффективности использования гаэс.
- •45. Использование трубопроводов сетевой воды для аккумулирования теплоты с целью расширения регулировочного диапазона. Условия применения, эффективность.
- •46. Рынок электроэнергии. Структура рынка. Основные правила рынка. Принципы работы рсв. Балансирующий рынок, назначение бр.
- •47. Рынок мощности. Отбор. Мощности. Условия оплаты мощности.
- •48. Принципы формирования цены на рынке рсв. Планирование работы станций в условиях рынка. За х-2 и х-1 дней.
- •49. Принципы выбора состава оборудования с учетом долгосрочного планирования(месяц, год, неделя) и лимитов топлива.
- •50. Распределение нагрузки между энергоблоками. Метод относительных приростов. Сущность метода. Условия применения и особенности использования в условиях рынка.
- •51. Основной критерий эффективности при распределении нагрузки между агрегатами в условиях рынка. Сущность метода. Условия применения. Основные ограничения.
- •52. Выбор оптимального состава оборудования. Основные критерии выбора и условия применения.
- •53. Особенности выбора состава оборудования и уровни загрузки агрегатов в условиях рынка, при наличии на станции 2-х и более видов топлива с различной стоимостью
- •54. Распределение нагрузки между агрегатами на станции с поперечными связями. Последовательность действий и критерии.
- •55. Алгоритм формирования оптимальной ценовой заявки. Влияние наличия не одной гтп на формирование цены.
40. Оптимизация режимов работы электростанций с использованием аккумуляторов тепла (аккумуляторы питательной воды). Принципы работы, основные проблемы и ограничения. Эффективность аккумулирования.
Для оптимизации работы энергосистем и отдельных станций в частности, путем выравнивания графиков нагрузок
генерирующего оборудования, можно использовать наряду с ГАЭС и другие виды аккумулирования энергии. К ним можно отнести в первую очередь: тепловые аккумуляторы различных типов, воздушные аккумуляторы.
Использование аккумуляторов позволяет обеспечить более равномерную загрузку генерирующего оборудования станций и тем самым повысить их надежность и экономичность. Кроме того, благодаря увеличению мощности в момент прохождения пиков нагрузки отпадает необходимость установки специальных пиковых мощностей.
Наиболее широкое распространение получили аккумуляторы горячей воды, чаще всего питательной воды [АПВ]. Эффективность таких аккумуляторов в значительной степени зависит от:
выбора параметров аккумулируемой воды;
выбора типа аккумулятора;
выбора схемы включения АГВ в тепловую схему.
Все эти задачи являются технико-экономическими. Исследования показывают, что рост параметров аккумулируемой воды приводит к повышению эффективности аккумулирования, но в то же время происходит увеличение затрат в аккумуляторы.
Типы аккумуляторов сетевой горячей воды:
атмосферные баки аккумуляторы, используются для аккумулирования горячей воды с температурой не выше 100оС (обычно 95 оС), такие баки используют для включения в схему отпуска тепла от ТЭЦ;
баки аккумуляторы под давлением, изготавливаемые, как правило, из напряженного железобетона.
При использовании схемы, представленной на рис. 1а (схема вытеснительного типа) установка (система) теплового аккумулирования работает следующим образом.
В процессе заряда аккумулятора, холодная вода из бака аккумулятора (9) забирается насосом (10) и направляется в питательный тракт после питательного насоса (7). В результате через систему регенерации высокого давления идет расход питательной воды, гораздо больший, чем в нормальном режиме работы, что требует увеличенного расхода пара в эти отборы, кроме этого, для догрева питательной воды до параметров, равных номинальным, используется дополнительный подогреватель (8), питаемый свежим паром. В результате часть питательной воды, после подогревателя (8), идет на котел, а часть поступает в бак аккумулятор. Для раздела “холодной” и “горячей” питательной воды используется подвижная мембрана.
При разряде аккумулятора питательная вода после питательного насоса (7) подается в бак аккумулятор по дополнительной магистрали (14) и вытесняет “горячую” воду из аккумулятора в линию питательной воды после ПВД. В результате прирост мощности обеспечивается за счет снижения расхода пара в систему регенерации высокого давления. При разряде, снижение мощности обеспечивается за счет уменьшения расхода пара на турбину за счет работы дополнительного подогревателя (8) и увеличение расхода пара в отборы на ПВД.