
- •1.Принципы классификация режимов пуска. Общая характеристика.
- •2. Блочный пуск. Общая характеристика. Ограничения. Преимущества и недостатки.
- •1.Блочный пуск – одновременный (совмещенный) пуск котельного агрегата и турбины и их вспомогательного оборудования, выделенных в отдельную технологическую схему;
- •3. Классификация режимов пуска, Дубль блочный пуск. Ограничения. Преимущества и недостатки.
- •1.Блочный пуск – одновременный (совмещенный) пуск котельного агрегата и турбины и их вспомогательного оборудования, выделенных в отдельную технологическую схему;
- •4. Особенности пуска турбин на станциях с поперечными связями от общестанционной магистрали. Проблемы, ограничения
- •5. Особенности пуска котла на станциях с поперечными связями. Пуск на общестанционную магистраль. Проблемы, ограничения, преимущества и недостатки
- •6. Пусковые схемы и их назначение. Общая характеристика.
- •7. Однобайпасная пусковая схема и ее модификации. Условия их применения, преимущества и недостатки.
- •8. Двухбайпасная пусковая схема и ее модификации. Условия их применения, преимущества и недостатки.
- •9. Комбинированная пусковая схема и ее модификации. Условия их применения, преимущества и недостатки.
- •10. Встроенная задвижка в пусковую схему котла. Полнопроходной сепаратор пусковой схемы. Преимущества и недостатки.
- •11. Основные этапы пуска. Операции при пуске энергоблока. Контроль основных параметров и допустимые пределы изменений. Основные технологические этапы пуска
- •Толчок ротора и разворот турбины
- •Нагружение энергоблока
- •13. Двухбайпасные пусковые схем. Технология пуска энергоблока с использованием двухбайпасной пусковой схемы. Преимущества и недостатки.
- •14. Особенности пуска барабанного котла. Технологические операции и основные ограничения. Пуска барабанных котлов на общестанционную магистраль.
- •15. Пуски турбин с противодавлением. Особенности пуска и технология пуска.
- •16. Совершенствование пусковых схем турбин с противодавлением (типа-р). Технологические операции, преимущества и недостатки.
- •17. Совершенствование пусковых схем турбин с промышленным отбором пара (типа-пт). Технологические операции, преимущества и недостатки
- •18. Совершенствование пусковых схем и технологии пуска на энергоблоках с промперегревом и однобайпасной пусковой схемой.
- •Технология пуска блока мощностью 200 мВт из горячего состояния (после простоя 6-8 ч) по предлагаемой схеме.
- •19. Нормативные (типовые) графики пусков. График-задание пуска блока из холодного состояния. Продолжительность этапов пуска энергоблоков. Основные факторы, определяющие продолжительность этапов пуска.
- •20. Нормативные (типовые) графики пусков. График-задание пуска блока из горячего состояния. Продолжительность этапов пуска энергоблоков. Основные факторы, определяющие продолжительность этапов пуска
- •21. Дополнительные затраты топлива на пуск. Потери топлива, тепла и электроэнергии на этапах пуска. Основные факторы определяющие потери топлива на пуск
- •23. Прохождение провалов графика нагрузки. Использование режимов останова и последующего пуска для прохождения провалов нагрузки. Ограничения, преимущества, недостатки, экономичность
- •24. Прохождение провала нагрузки с использованием моторного режима. Технология использования, преимущества и недостатки. Технологические схемы перевода турбоагрегата в моторный режим.
- •25. Затраты топлива на поддержание турбоагрегата в моторном режиме.
- •26. Прохождение провала нагрузки, с использованием режима горячего вращающегося резерва, технология перевода, преимущества и недостатки. Затраты топлива на поддержание гвр.
- •28. Снижение начальных параметров, как вынужденный способ снижения электрической мощности.
- •30. Привлечение теплофикационных турбин к прохождению провалов нагрузки, путем передачи тепловой нагрузки на пиковые бойлера при сохранении отпуска тепла от станции. Технологические схемы.
- •31. Режим обвода цвд на теплофикационных турбинах, как способ прохождения провала нагрузки. Преимущества, недостатки. Технологические схемы реализации.
- •33. Привлечение теплофикационных агрегатов с промперегревом, для прохождения провала нагрузки, путем частичного обвода цвд
- •34. Повышение вакуума в конденсаторе, как способ получения дополнительной мощности и снятия ограничений.
- •36. Прохождение пиковой части графика нагрузки с использованием режимов отключения пвд. Технология реализации, основные ограничения, преимущества и недостатки. Эффективность использования.
- •38. Выравнивание графиков нагрузки как средство оптимизации режимов работы. Выравнивание графика нагрузки у потребителя. Заинтересованность потребителя в условиях рынка.
- •40. Оптимизация режимов работы электростанций с использованием аккумуляторов тепла (аккумуляторы питательной воды). Принципы работы, основные проблемы и ограничения. Эффективность аккумулирования.
- •Недостатки аккумуляторов питательной воды:
- •41. Аккумуляторы фазового перехода и их использование для оптимизации режимов работы тэс и аэс.
- •42. Расширение регулировочного диапазона тэц за счет использования аккумуляторов сетевой воды.
- •43. Использование гаэс для выравнивания графика нагрузки. Основные принципы работы гаэс. Эффективность выбора площадки и эффективность гаэс.
- •44. Понятие кпд гаэс. Оценка эффективности использования гаэс.
- •45. Использование трубопроводов сетевой воды для аккумулирования теплоты с целью расширения регулировочного диапазона. Условия применения, эффективность.
- •46. Рынок электроэнергии. Структура рынка. Основные правила рынка. Принципы работы рсв. Балансирующий рынок, назначение бр.
- •47. Рынок мощности. Отбор. Мощности. Условия оплаты мощности.
- •48. Принципы формирования цены на рынке рсв. Планирование работы станций в условиях рынка. За х-2 и х-1 дней.
- •49. Принципы выбора состава оборудования с учетом долгосрочного планирования(месяц, год, неделя) и лимитов топлива.
- •50. Распределение нагрузки между энергоблоками. Метод относительных приростов. Сущность метода. Условия применения и особенности использования в условиях рынка.
- •51. Основной критерий эффективности при распределении нагрузки между агрегатами в условиях рынка. Сущность метода. Условия применения. Основные ограничения.
- •52. Выбор оптимального состава оборудования. Основные критерии выбора и условия применения.
- •53. Особенности выбора состава оборудования и уровни загрузки агрегатов в условиях рынка, при наличии на станции 2-х и более видов топлива с различной стоимостью
- •54. Распределение нагрузки между агрегатами на станции с поперечными связями. Последовательность действий и критерии.
- •55. Алгоритм формирования оптимальной ценовой заявки. Влияние наличия не одной гтп на формирование цены.
31. Режим обвода цвд на теплофикационных турбинах, как способ прохождения провала нагрузки. Преимущества, недостатки. Технологические схемы реализации.
Для блоков с промежуточным перегревом пара расширение диапазона изменения электрической мощности (причем независимо от температуры наружного воздуха) можно получить за счет частичного или полного обвода ЦВД. Этот способ обеспечивает наиболее широкие диапазоны изменения нагрузки и является одним из самых экономичных, при условии работы турбины с полностью закрытой диафрагмой. Во избежание захолаживания органов регулирования и паровпуска турбины, при работе с частичным обводом ЦВД необходимо использовать скользящее давление. Кроме этого такой режим позволяет значительно уменьшить затраты на привод питательного насоса.
Так как все блоки, установленные в энергосистемах, выполнены по однобайпасной схеме , то для реализации этого способа необходима реконструкция пусковой схемы блока (рис. 7.10 ).
Рис.7.10.Схема обвода ЦВД, при разгружении энергоблока
В этом случае, необходима установка дополнительной БРОУ на "линии острого пара" – "холодныйпромперегрев". Часть пара помимо ЦВД подается на выхлоп ЦВД. В результате сокращение мощности происходит только за счет уменьшения подачи пара в ЦВД. Расчеты показали, что при полной загрузке теплофикационных отборов ЦВД свыше 40% от расхода пара в голову турбины приводит к разогреву выхлопа ЦВД до 400 °С и выше, так что температура металла последних ступеней ЦВД может выйти за пределы установленные заводом изготовителем. Для дальнейшего разгружения необходим полный обвод ЦВД. Обеспечение нормального температурного уровня ЦВД в этом случае достигается за счет пропуска небольшого количества пара через ЦВД противотоком. Использование такой схемы резко уменьшает мобильность турбоагрегата по сравнению с частичным обводом ЦВД. Обвод ЦВД по пару в пределах 40% обеспечивает допустимый уровень температурного состояния ЦВД, а также снижение электрической мощности на 40–50 МВт. В этом случае обеспечивается очень высокий уровень мобильности блока.
32. Привлечение теплофикационных турбин к прохождению провалов нагрузки, путем передачи тепловой нагрузки на ПВК при сохранении отпуска тепла от станции. Преимущества и недостатки, основные ограничения. Экономичность. Критерии применения в условиях рынка
Самый простой путь уменьшения электрической мощности теплофикационной турбины при ее работе с полностью закрытой диафрагмой и минимальным вентиляционным пропуском пара в конденсатор связан с принудительным уменьшением ее тепловой нагрузки до того значения, которое соответствует требуемому уровню разгрузки турбины. В этом случае недоотпущенное турбиной тепло должно быть восполнено замещающим источником тепловой энергии ( в данном случае пиковыми водогрейными котлами).
Подавляющую часть времени, когда ПТУ работает с большими нагрузками отопительных отборов, ПВК тогда работают с частичными тепловыми нагрузками или погашены полностью. В этом случае ПВК могут быть использованы в ночные часы для восполнения той части тепловой нагрузки, которая недовыдана сетевыми подогревателями. Однако в небольшие периоды года, когда температура наружного воздуха низка, а ПВК работают круглосуточно с тепловыми нагрузками, близкими к максимальным, возможности компенсации недовыработки тепловой мощности основными сетевыми подогревателями за счет ПВК становятся ограниченными и в этот период маневренность ТЭЦ существенно уменьшается.
На рис. 7.6 приведены принципиальные графики возможности разгружения турбоагрегата в зависимости от температуры наружнего воздуха и графика тепловой нагрузки. Весь участок годового графика тепловой нагрузки по продолжительности можно разбить на несколько участков. В зоне ( 0 - 1 ) при отрицательных температурах наружного воздуха ниже температуры начала включения ПВК, их можно догрузить по тепловой нагрузке на величину Qхпвк, которая в этом случае изменяется в диапазоне от QПВКmax до нуля. И тогда:
( 7.15 )
где:QПВКmax,
Qхпвк – максимальная
тепловая нагрузка ПВК и тепловая нагрузка
ПВК при произвольной температуре
наружного воздуха tхпв
соответственно.
Величину тепловых отборов турбины в этом случае можно снизить на ∆Qпвк , т.е. до
Qотбх = - ∆QПВКх ( 7.16 )
где:
Qотбmax – максимальный отбор тепла от отборов турбины.
В этом случае, за счет снижения тепловой нагрузки отборов можно уменьшить расход пара на турбину и снизить электрическую мощность турбины в соответствии с диаграммойрежимов. При этом температура сетевой воды tпсвх за СП-2 будет равна:
, ( 7.17 )
В зоне 1-2 при нормальной нагрузке ПВК отключены. При разгружении турбины, часть нагрузки отборов передается на ПВК, а отборы пара на сетевые подогреватели уменьшаются и в конце зоны давление в отборах достигает минимально-допустимых значений.
Здесь появляется другой фактор, ограничивающий глубину разгрузки отборов при данном способе, - механическая прочность ступеней предотборного и промежуточного отсеков турбины. Этим определяется предельная глубина разгрузки. Дальнейшее разгружение в таких условиях возможно только при открытии поворотной диафрагмы с переводом турбины на работу со значительными конденсационными пропусками пара в конденсатор и с передачей еще большей части тепловой нагрузки на ПВК. Переход к таким режимам связан с резким увеличением удельных расходов теплоты на выработку электроэнергии.