Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фин.менеджмент (2).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
167.13 Кб
Скачать

9) Методический инструментарий оценки стоимости денег во времени операции наращения и дисконтирования

Ставка наращения представляет собой процентную ставку, по которой осуществляется процесс наращения стоимости денежных средств (компаундинг), т.е. определяется их будущая стоимость.

Ставка дисконтирования (дисконтная ставка) представляет собой процентную ставку, по которой осуществляется процесс дисконтирования стоимости денежных средств, т.е. определяется их настоящая стоимость.

I. Методический инструментарий оценки стоимости денег по простым процентам.

1. При расчете суммы простого процента в процессе наращения стоимости (компаундинга) используется следующая формула:

где I — сумма процента за обусловленный период времени в целом; Р — первоначальная сумма (стоимость) денежных средств;

n. — количество интервалов расчета процентных платежей, в общем, периоде времени;

i — используемая процентная ставка, выраженная десятичной дробью.

В этом случае будущая стоимость вклада (S) с учетом начисленной суммы процента определяется по формуле:

|

Множитель (1 + ni) называется множителем (или коэффициентом) наращения

суммы простых процентов. Его значение всегда должно быть больше единицы.

2. При расчете суммы простого процента в процессе дисконтирования стоимости (т.е. суммы дисконта) используется следующая формула:

Где D — сумма дисконта (рассчитанная по простым процентам) за период времени в целом;

S — стоимость денежных средств;

n — количество интервалов, по которым осуществляется расчет процентных платежей, в общем периоде времени;

i — используемая дисконтная ставка, выраженная десятичной дробью.

В этом случае настоящая стоимость денежных средств (Р) с учетом рассчитанной суммы дисконта определяется по следующим формулам:

Используемый в обеих случаях множитель называется дисконтным множителем (коэффициентом) суммы простых процентов, значение которого всегда должно быть меньше единицы.

10) Простые и сложные проценты

Наращение может осуществляться по схеме простых и слож­ных процентов.

Классификация схем наращивания

Формула наращения простых процентов (simple interest). Нара­щение простых процентов означает, что инвестируемая сумма ежегодно возрастает на величину PV • r. В этом случае размер инвестированного капитала через n лет можно определить по формуле:

FV = PV (1 + r • n).

Формула наращения сложных процентов (compound interest). Наращение по схеме сложных процентов означает, что очеред­ной годовой доход исчисляется не с исходной величины инвести­рованного капитала, а с общей суммы, включающей также ранее начисленные и не востребованные инвестором проценты. В этом случае размер инвестированного капитала через n лет можно оп­ределить по формуле:

FV = PV (1 + r)n.

При одном и том же значении процентной ставки:

1) темпы наращения сложных процентов выше темпов нара­щения простых, если период наращения превышает стандартный интервал начисления дохода;

2) темпы наращения сложных процентов меньше темпов на­ращения простых, если период наращения меньше стандартного интервала начисления дохода.

Области применения простых и сложных процентов. Простые и сложные проценты могут применяться как в отдельных опера­циях, так и одновременно. Области применения простых и слож­ных процентов можно разделить на три группы:

1) операции с применением простых процентов;

2) операции с применением сложных процентов;

3) операции с одновременным применением простых и сложных процентов.

1. Областью применения простых процентов чаще всего явля­ются краткосрочные операции (со сроком до одного года) с од­нократным начислением процентов (краткосрочные ссуды, век­сельные кредиты) и реже — долгосрочные операции.

Область применения простых процентов

При краткосрочных операциях используется так называемая промежуточная процентная ставка, под которой понимается го­довая процентная ставка, приведенная к сроку вложения денеж­ных средств. Математически промежуточная процентная ставка равна доле годовой процентной ставки. Формула наращения простых процентов с использованием промежуточной процент­ной ставки имеет следующий вид:

FV = PV (1 + f • r),

или

FV = PV (1 + t • r / Т),

где f=t/T;t — срок вложения денежных средств (при этом день вложения и день изъятия денежных средств принимаются за один день); Т — расчетное количество дней в году.

При долгосрочных операциях начисление простых процентов рассчитывается по формуле:

FV = PV (1 + r • n),

где n — срок вложения денежных средств (в годах). ,

2. Областью применения сложных процентов являются дол­госрочные операции ( со сроком, превышающим год), в том числе предполагающие внутригодовое начисление процентов.

Область применения сложных процентов

В первом случае применяется обычная формула начисления сложных процентов:

FV = PV (1 + r)n.

Во втором случае применяется формула начисления сложных процентов с учетом внутригодового начисления. Под внутригодовым начислением процентов понимается выплата процентного дохода более одного раза в год. В зависимости от количества вы­плат дохода в год (m) внутригодовое начисление может быть:

1) полугодовым (m = 2);

2) поквартальным (m = 4);

3) ежемесячным (m = 12);

4) ежедневным (m = 365 или 366);

5) непрерывным (m -» ?).

Формула наращения при полугодовом, поквартальном, еже­месячном и ежедневном начислении сложных процентов имеет следующий вид:

FV = PV (1 + r / m)nm,

где PV — исходная сумма;

г — годовая процентная ставка;

n — количество лет;

m — количество внутригодовых начислений;

FV — наращенная сумма.

Процентный доход при непрерывном начислении процентов рассчитывается по следующей формуле:

формула-003

FVn = Р • ern,или:FVn = P • e?n,где: e = 2, 718281 — трансцендентное число (число Эйлера);

е?n — множитель наращения, который используется как при целом, так и дробном значении n;

? — специальное обозначение процентной ставки при непрерыв­ном начислении процентов (непрерывная процентная ставка, «сила роста»);

n — количество лет.

При одинаковой величине исходной суммы, одинаковом сро­ке вложения денежных средств и значении процентной ставки возвращаемая сумма оказывается больше в случае использования формулы внутригодовых начислений, чем в случае использова­ния обычной формулы начисления сложных процентов:

FV = PV (1 + r / m)nm > FV = PV (1 + r)n.

Если доход, полученный при использовании внутригодовых начислений, выразить в процентах, то полученная процентная ставка окажется выше той, которая использовалась при обычном начислении сложных процентов.

Таким образом, первоначально заявленная годовая процент­ная ставка для начисления сложных процентов, называемая но­минальной, не отражает реальной эффективности сделки. Про­центная ставка, отражающая фактически полученный доход, на­зывается эффективной. Классификацию процентных ставок при внутригодово начислении сложных процентов наглядно иллю­стрирует рисунок.

Классификацию процентных ставок при внутригодовом начислении сложных процентов

Номинальная процентная ставка задается изначально. Для каждой номинальной процентой ставки и на ее основании мож­но рассчитать эффективную процентную ставку (rе).

Из формулы наращения сложных процентов можно получить формулу эффективной процентной ставки:

FV = PV (1 + r)n;

(1 + re) = FV / PV.

Приведем формулу наращения сложных процентов с внутригодовыми начислениями, при которых каждый год начисляется r / m процента:

FV = PV (1 + r / m)nm.

Тогда эффективная процентная ставка находится по формуле:

(1 + re) = (1 + r/m)m,илиre = (l + r/m)m- 1,

где rе — эффективная процентная ставка; r — номинальная процентная ставка; m — количество внутригодовых выплат.

Величина эффективной процентной ставки зависит от коли­чества внутригодовых начислений (m):

1) при m = 1 номинальная и эффективная процентные ставки равны;

2) чем больше количество внутригодовых начислений (значение m), тем больше эффективная процентная ставка.Областью одновременного применения простых и сложных процентов являются долгосрочные операции, срок которых со­ставляет дробное количество лет. При этом начисление процентов возможно двумя способами:1) начисление сложных процентов с дробным числом лет;

2) начисление процентов по смешанной схеме.

В первом случае для расчетов применяется формула сложных процентов, в которой присутствует возведение в дробную сте­пень:

FV = PV (1 + r)n+f,

где f — дробная часть срока вложения денежных средств.

Во втором случае для расчетов применяется так называемая смешанная схема, которая включает формулу начисления слож­ных процентов с целым числом лет и формулу начисления про­стых процентов для краткосрочных операций:

FV = PV (1 + r)n • (1 + f • r),илиFV = PV (1 + r)n • (1 + t • r / Т).