Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИИ И ТЕРМОДИНАМИКИ.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
348.67 Кб
Скачать

4.Работа газа при изменении обьёма.Первое начало термодинамики.

4. Будем искать выражение в общем виде для внешней работы, которую совершает газ при изменении его объема. Рассмотрим, например, газ, который находится под поршнем в цилиндрическом сосуде (рис. 1). Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние dl, то он осуществляет над ним работу    где S — площадь поршня, Sdl=dV— изменение объема газа. Таким образом,   (1)  Полную работу А, которую совершает газ при изменении его объема от V1 до V2, найдем интегрированием формулы (1):   (2)  Результат интегрирования зависит от вида зависимости между давлением и объемом газа. Найденное для работы выражение (2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.  Осуществленную в том или ином процессе работу можно изобразить графически с помощью кривой в координатах р, V. Пусть, например, изменение давления газа при его расширении изображается кривой на рис. 2. При увеличении объема на dV совершаемая газом работа равна pdV, т. е. определяется площадью полоски с основанием dV, которая заштрихована на рисунке. Значит полная работа, которая совершается газом при расширении от объема V1 до объема V2, определяется площадью, ограниченной осью абсцисс, кривой p=f(V) и прямыми V1 и V2.  Графически можно представлять только равновесные процессы — процессы, которые состоят из последовательности равновесных состояний. Они протекают таким образом, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы не являются равновесными (они протекают с конечной скоростью), но в ряде случаев неравновесностью реальных процессов можно пренебречь (чем медленнее протекает процесс, тем он ближе к равновесному). В классической термодинамике рассматриваемые процессы предполагаются равновесными. Первое начало термодинамики, один из двух основных законов термодинамики, представляет собой закон сохранения энергии для систем, в которых существенное значение имеют тепловые процессы. П. н. т. было сформулировано в середине 19 в. в результате работ Ю. Р. Майера, Дж. Джоуля и Г. Гельмгольца (см. Энергии сохранения закон). Согласно П. н. т., термодинамическая система (например, пар в тепловой машине) может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. П. н. т. часто формулируют как невозможность существования вечного двигателя 1-го рода, который совершал бы работу, не черпая энергию из какого-либо источника.

5.Классическая теория теплоемкостей идеального газа и её ограниченность.

5. 1. Классическая теория теплоемкости основана на предполо- охении, что к атомно-молекулярным системам применимы законы классической ньютоновой механики. В действительности примени- мость ньютоновой механики к атомно-молекулярным системам ограничена. По этой причине классическая теория не смогла дать полного удовлетворительного решения проблемы теплоемкости и была заменена более общей квантовой теорией. Однако во многих случаях классическая теория приводила к удивительно хорошему согласию с опытом. Причина этого в том, что классическая теория является приближенным предельным случаем квантовой и, следо- вательно, имеет определенную область применимости. В пределах этой области выводы классической теории практически не отли- чаются от выводов квантовой. Мы начинаем изложение с класси- ческой теории. Она проще квантовой. При таком порядке изложе- ния отчетливее выявятся принципиальные затруднения класси- ческой физики, преодоление которых привело к замене классиче- ских представлений квантовыми. Для классических систем справедлива теорема о равномерном распределении кинетической энергии по степеням свободы. На основе этой теоремы можно построить классическую теорию теплоемкостей газов и твердых тел. Начнем с теплоемкости газов. В § 24 было показано, что для идеальных газов cv = v Cp = v£i- (66-1) Отсюда видно, что адиабатическая постоянная у однозначно определяет обе теплоемкости СР и Cv идеального газа. Поэтому для сопоставления теории с опытом достаточно сравнивать между собой опытные и теоретические значения только адиабатической постоянной у. Внутренняя энергия газа состоит из кинетической энергии поступательного, вращательного и внутреннего движения молекул и атомов, а также из потенциальной энергии их взаимодействия. Для идеальных газов, когда молекулярные силы пренебрежимо малы, потенциальной энергией взаимодействия молекул можно пренебречь.