Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
zvit_pro_praktiku 2.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
641.02 Кб
Скачать

Міністерство освіти та науки України

Львівський національний університет імені Івана Франка

Кафедра біофізики та біоінформатики

ЗВІТ

про проходження навчально-виробничої практики

Виконала:

студентка IІІ курсу, блб-34

Шумило Г.

Перевірила:

доц. Галан М.Б.

Львів-2013

ЗМІСТ

Вступ………………………………………………………………………………….3

РОЗДІЛ І.ОГЛЯД ЛІТЕРАТУРИ…………………………………………………...5

1.1 Антиоксидантна система, як захист проти вільних радикалів ……………….5

1.2 Гістамін:історія вивчення, структура,шляхи синтезу і вивільнення ….…….19

РОЗДІЛ ІІ.МЕТОДИ І МАТЕРІАЛИ ДОСЛІДЖЕННЯ………………………….20

2.1Характеристика об’єкту дослідження………………………………………….24

2.2 Визначення активності супероксиддисмутази………………………………..25

2.3 Визначення активності каталази

2.4 Визначення активності глутатіонпероксидази………………………………..

РОЗДІЛ ІІІ.РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ...............................................26

3.1Активність супероксиддисмутази у нирці щура за дії гістаміну......................26

3.2 Активність каталази у нирці щура за дії гістаміну……………………………

РОЗДІЛ IV.ОХОРОНА ПРАЦІ…………………………………………………….

4.1 Аналіз стану виробничих умов………………………………………………

4.1.1 Характеристика лабораторії……………………………………………….

4.1.2 Аналіз методів досліджень та характеристика обладнання…………….

4.1.3 Характеристика об’єкту дослідження та речовин, їх небезпечні властивості……………………………………………………………………….

4.2 Організаційно-технічні заходи……………………………………………..

4.2.1 Організація робочого місця та роботи……………………………………

4.2.2 Санітарно-гігієнічні вимоги до умов праці………………………………

4.2.3 Заходи безпеки при роботі з обладнанням, об’єктом дослідження та речовинами……………………………………………………………………..

4.2.4 Безпека в надзвичайних ситуаціях……………………………………..

ЛІТЕРАТУРА..............................................................................................................30

ВСТУП

На сьогоднішній день поширеними стають алергічні реакції організму на різні чинники. Відомо, що при алергії відбувається вивільнення гістаміну з гістаміноцитів. У звичайних умовах гістамін знаходиться в організмі переважно у зв'язаному (неактивному) стані. При різних патологічних процесах (анафілактичний шок, опіки, відмороження, сінна лихоманка, кропив'янка та інші алергічні захворювання), а також під час потрапляння до організму деяких хімічних речовин, кількість вільного гістаміну підвищується. Речовинами, що здатні вивільняти гістамін є d-тубокуратин, морфін, йодовмісні рентгеноконтрастні препарати, високомолекулярні сполуки (поліглюкін та ін.) і інші лікарські засоби.

Вільний гістамін має значну активність: він викликає спазм гладких м'язів (включаючи м'язи бронхів), розширення капілярів і зниження артеріального тиску, застій крові в капілярах і збільшення проникності їхніх стінок, викликає набрякання оточуючих тканин і згортання крові.

Відомо, що антиоксидантна система захисту організму контролює і гальмує всі етапи вільнорадикальних реакцій, починаючи від їх ініціації і закінчуючи утворенням гідроперекисів та малонового диальдегіду. Основний механізм контролю цих реакцій пов'язаний з ланцюгом оборотних окисно-відновних реакцій іонів металів, глутатіону, аскорбату, токоферолу та інших речовин, значення яких особливо важливе для збереження довго існуючих макромолекул нуклеїнових кислот і білків, деяких складових мембран.

На сьогодні залишається невідомою дія вільного гістаміну на функціональні параметри різних тканин організму, зокрема нирки, яка виконує видільну функцію. З огляду на це, важливо зафіксувати зміни системи антиоксидантного захисту у клітинах цього органу за дії гістаміну.

Мета: дослідити стан антиоксидантної системи у нирці щура за дії гістаміну.

Завдання:

  1. Визначити активність супероксиддисмутази (СОД), каталази (КАТ), глутатіонпероксидази (ГПО) у нирках інтактних тварин.

  2. Дослідити зміну активності СОД, КАТ, ГПО у нирках щура за дії гістаміну, у концентраціях 1 та 8 мкг/кг.

Розділ 1. Огляд літератури

1.1. Антиоксидантна система, як захист проти вільних радикалів

Антиоксидантна система захисту організму (АОСЗО) контролює і гальмує всі етапи вільнорадикальних реакцій, починаючи від їх ініціації і закінчуючи утворенням гідроперекисів та малонового диальдегіду. Основний механізм контролю цих реакцій пов'язаний з ланцюгом оборотних окисно-відновних реакцій іонів металів, глутатіону, аскорбату, токоферолу та інших речовин, значення яких особливо важливе для збереження довго існуючих макромолекул нуклеїнових кислот і білків, деяких складових мембран. Не випадково рівень активності АОСЗО досягає максимальних значень до початку S-фази, коли ДНК деспіралізується і особливо уразлива до продуктів вільнорадикального пероксидного окиснення. Є підстави вважати, що тривалість життя макромолекул у клітині багато в чому визначається саме їх стійкістю до атаки вільно-радикальних продуктів.

Виходячи з сучасних уявлень про механізм вільнорадикального пероксидного окиснення, АОСЗО можна умовно розділити на наступні групи залежно від того, на яку ланку метаболізму спрямована її дія. До першої групи антиоксидантної системи захисту відносять жиророзчинні ендогенні антиоксиданти: вітаміни групи Е (токофероли), убіхінон, вітаміни групи А (ретиноли) та провітаміни групи А (α-, β-, γ-каротини), вітаміни групи D (кальцифероли), К (філохінони і менахінон), ліпоєва кислота, деякі стероїдні гормони, мелатонін та інші. До другої групи відносять захисні ферменти: СОД, каталазу, глутатіонредуктазy (ГР), а також низько- та високомолекулярні сполуки, що містять тіольні- та селеногрупи, зокрема цистеїн, цистін та інші.

Ці захисні ферменти запобігають надлишковому утворенню активних форм кисню та приймають участь в нерадикальному розкладанні пероксидів ліпідів. Так, СОД є ключовим ферментом антирадикального захисту. Вона дисмутує супероксидрадикал до менш токсичного пероксиду водню.

Третя захисна система — це два ферменти: глутатіонпероксидаза (ГПО) і глутатіонтрансфераза (ГТ). ГПО каталізує розкладання гідропероксидів ліпідів нерадикальним шляхом за допомогою глутатіону відновленого. Більше 70 % ГПО локалізуються у цитозолі, тоді як 25–30 % – у матриксі мітохондрій. При цьому дія фосфоліпаз полягає у відщeпленні окисненої жирної кислоти, що містить гідропероксидну групу (LOOH), а дія глутатіонпероксидази зводиться до відновлення цієї групи до спиртової з одночасним окисненням глутатіону (GSH) до дисульфіду (GSSH).

Для детоксикації Fe2+ в організмі існує четверта захисна система: окиснення і зв'язування іонів Fe2+. У плазмі крові ця система представлена ферментом церулоплазміном (фероксидазою), що окиснює Fe2+ до Fe3+ киснем без утворення вільних радикалів, та білком трансферином, який зв'язує і переносить у кров'яному руслі іони Fe3+, а потім захоплюється клітинами. У клітинах іони заліза можуть відновлюватися аскорбіновою кислотою та іншими відновниками, але потім окиснюються і депонуються всередині ферментного білкового комплексу феритину.

Властивості антиоксидантів.До антиоксидантів відносяться деякі вітаміни, мінерали і ферменти (або ензими), які порушують процес утворення вільних радикалів в організмі і запобігають їхній шкідливій дії.

Вільні радикали – це атоми або групи атомів, які викликають пошкодження клітини, порушують функції імунної системи, що призводить до інфекційних і різних дегенеративних захворювань, включаючи рак і серцево-судинні патології. Вчені вважають, що пошкодження, яке викликається вільними радикалами, є основою процесів старіння.

Відомі наступні групи вільних радикалів, що утворюються в організмі: пероксиди, гідроксильні радикали, пероксид водню, різні ліпідні пероксидні сполуки, гіпохлоритні радикали і деякі інші. Вони можуть утворюватися під впливом радіації, токсичних хімічних сполук, тривалої дії сонячних променів, а також різних метаболічних процесів, таких як розщеплення жирів при утворенні енергії.

Кількість вільних радикалів в організмі зазвичай контролюється за рахунок дії спеціальних ферментів, які нейтралізують ці шкідливі сполуки. У організмі утворюється 4 таких ферменти: СОД, метіонінредуктаза, каталаза і ГПО.

Для того, щоб звести до мінімуму пошкодження, що викликаються вільними радикалами, слід приймати препарати, що містять антиоксиданти. Вважається, що прийом таких добавок запобігає розвитку злоякісних новоутворень.

Властивості супероксиддисмутази

Ключовим ферментом антиоксидантного захисту є СОД. При її участі розривається ланцюг вільнорадикальних процесів на початку свого зародження на стадії одно-електронного відновлення кисню з утворенням супероксидного аніон-радикалу. На даний час виділено кілька ізоферментних форм СОД. Cu, Zn-СОД (31 кДа) є найбільш розповсюдженою та добре вивченою. Вона міститься у клітинах еукаріот і володіє чутливістю до дії ціанідів. Молекула ферменту складається з двох ідентичних субодиниць, кожна з яких в області активного центру містить один атом міді та цинку.

Mn-СОД є ціанрезистентною формою і знаходиться в основному в матриксі мітохондрій і хлоропластів еукаріот. На даний час цей ізофермент СОД виявлено у бактерій. Складається з чотирьох субодиниць, що містять іон марганцю в області активного центру. Виділяють ще одну ізоформу СОД – залізовмісний фермент, який спочатку був помічений у прокаріот. На даний час доведено, що цей фермент широко розповсюджений.

Властивості каталази

Каталаза каталізує реакції розчеплення пероксиду водню, що утворюється у процесі біологічного окиснення, на воду і молекулярний кисень: 2H2O2 = 2H2O + O2. В окисненому стані каталаза може проявляти пероксидазну активність, беручи участь в окисненні спиртів і альдегідів. Каталаза є одним із найшвидших ферментів: одна молекула каталази здатна перетворити кілька мільйонів молекул пероксиду водню на воду і кисень за секунду.

За структурою, каталаза – тетраметр з чотирьох поліпептидних ланцюжків, кожний близько 500 амінокислот у довжину. У своєму активному центрі містить гем.

Оптимальна кислотність для роботи каталази – рН 7,0, тоді як оптимальна температура залежить від виду.

Каталаза міститься в більшості аеробних клітин. У тварин вона міститься майже у всіх тканинах організму. Найбільша її кількість у печінці, нирках і еритроцитах. На субклітинному рівні каталаза, в основному, локалізована в пероксисомах і цитозолі. Найбільша її кількість може міститися у лізосомах і мітохондріях. Каталаза відноситься до внутрішньоклітинних ферментів, через високу молекулярну масу погано проникає у внутрішньоклітинне середовище, де може швидко піддаватися протеолітичному розщепленню.

Властивості глутатіонпероксидази

Глутатіонпероксидаза захищає організм від окислювального пошкодження. Вона каталізує відновлення перекисів ліпідів у відповідні спирти і відновлення перекису водню до води.

По своїй структурі ГПО є тетраметром, з молекулярною масою кожної субодиниці 19 кДа. Кожна субодиниця містить по одному атому селену, зв’язаного з цистеїновими залишками. Фермент локалізований, в основному, у цитозолі. На даний час відомо 5 ізоферментних форм селенвмістимої ГПО. В плазмі і молоці виявлено позаклітинний ізофермент, в цитоплазмі клітин печінки і кишечника ізофермент ГПО-G1. Виявлено ізофермент, що не містить селену і є ідентичним глутатіон-S-трансферазі.

ГПО, використовуючи відновлену форму глутатіона в якості субстрату, ефектив6но розщеплює не тільки пероксид водню, але і органічні гідропероксидні сполуки, включаючи гідропероксиди поліненасичених жирних кислот. В умовах окисного стресу, коли різко зростає концентрація пероксиду водню, основна роль в її розщепленні належить каталазі. Активність ГПО залежить від концентрації відновленої форми глутатіону. Відновлення утвореного окисненого глутатіону здійснюється за рахунок роботи фермента глутатіонредуктази – цитоплазматичного білка, розміщеного в тканинах подібно глутатіонпероксидазі. Діяльність глутатіонредуктази залежить від рівня НАДФН і від стану пентозофосфатного циклу та активності її ключового фермента глюкозо-6-фосфатдегідрогенази. Вона відновлює окиснений глутатіон, використовуючи НАДФН, який утворюється за рахунок реакцій пентозного циклу.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]