
- •Iсторiя фiзiологiї рослин
- •Активний I пасивний транспорт iонiв по рослинi
- •Будова і функції каротиноїдів
- •Будова I функцiї кореневої системи у рослин.
- •Будова I функцiї мембран рослин
- •Будова продихiв. Механiзми регуляцiї вiдкривання продихiв
- •Будова хлоропластiв та їх функцiї
- •Будова, I функцiї хлорофiлiв
- •Взаємозв'язок основних функцiй в рослинному органiзмi
- •Види азотних добрив - їх вплив на рослини
- •Види фосфорних добрив - їх вплив на рослини
- •Вплив водного дефiциту на фiзiологiчнi процеси у рослин
- •Вплив зовнішніх факторів на дихання рослин
- •Вплив факторiв зовнiшнього середовища на рiст рослин
- •Гормональна теорiя тропiзмiв Холодного I Вента
- •Гормональна теорiя тропізмів
- •Екологiя фотосинтезу . Вплив ендо та екзогенних факторiв на рослини
- •Екологія фотосинтезу.
- •Етапи онтогенезу рослин
- •Етапи росту клітин рослин
- •Залежнiсть росту рослин вiд екзо та ендогенних факторiв
- •Зимостійкість
- •Класифікація добрив – мінеральних та органічних
- •Класифікація мінеральних добрив – особливості вплив на рослин
- •Коренева система як орган поглинання та обмiну речовин
- •Методи вивчення питань мiнерального живлення і росту клітин та рослин
- •Механiзми вiдкриття та закриття продихiв
- •Iснує 3 механiзми вiдкриття I закриття продихiв:
- •Морозостiйкiсть рослин
- •Окисне фосфорилювання
- •Органоїди рослинної клiтини - будова I функцiї
- •Особливостi структури рослинних клiтин, методи їх дослiдження
- •Особливості водного режиму рослин різних екологічних груп.
- •Охарактеризуйте механiзми пересування води по рослинах
- •Пластиднi пiгменти рослин
- •Посухостiйкiсть рослин
- •Предмет і завдання сучасної фiзiологiї рослин, зокрема на Українi
- •Природнi iнгiбiтори росту рослин
- •Регуляцiя росту I розвитку свiтлом. Фотоперiодизм.
- •Регуляція процесів дихання
- •Роль акад. Прянiшнiкова у розвитку фiзiологiї рослин
- •Роль мiкроелементiв у ростi та розвитку рослин.
- •Рослинна клiтина, як осмотична система
- •Рухи рослин
- •Сoлестiйкiсть рослин
- •Свiтлова стадiя фотосинтезу
- •Синтетичнi регулятори росту рослин
- •Темнова стадiя фотосинтезу
- •Транспiрацiя рослин, види, її закономiрностi
- •Транспорт електронiв при фотосинтезі Основні компоненти електронно-транспортного ланцюжка Фотосистема II
- •Фотосистема I
- •Циклічний і псевдоциклічний транспорт електрона
- •Транспорт органiчних та мiнеральних речовин по рослинi
- •Фiзiологiчна адаптацiя рослин до стресів
- •Фiзiологiчна роль ауксинів
- •Фiзiологiчна роль гiберелiнiв рослин
- •Фiзiологiчна роль мiкроелементiв
- •Фiзiологiчна роль магнiю і фосфору
- •Фiзiологiчна роль сiрки та магнію
- •Фiзiологiчна роль фосфору і калію
- •Фiзiологiчна роль цитокiнiнiв
- •Фiзiологiчно активнi речовини рослин
- •Фiкобiлiни -їх роль у фотосинтезi рослин
- •Фiтогормони рослин, їх класифiкацiя та роль в регуляцiї фiзiологiчних процесiв
- •Фази росту клiтин у рослин, особливості
- •Фаза поділу
- •Фаза розтягнення
- •Фаза диференціювання
- •Фізіологічна дія гіберелінів
- •Фізіологічна роль азоту
- •Фізіологічне значення гліколізу і циклу Кребса
- •Фізіологічне значення пфц і гліоксалатного циклу
- •Фітогормональна регуляція процесів росту і розвитку рослин.
- •Форми води в грунтi- їх значення
- •Фотодихання
- •Фотодихання
- •Фотосистеми I I II . Фотофосфорилювання.
- •Фотофосфорилювання
- •Хiмiчний склад рослинної клiтини
- •Хвороби при нестачi макро I мікроелементів
- •Холодостiйкiсть рослин
- •Циклiчне та нециклiчне фотофосфорилювання
- •Циклiчний I нециклiчний транспорт електронiв
- •Явище спокою у рослин, його фiзiологiчна функцiя, керування спокоєм.
- •Явище яровизації
- •Якi сили пiднiмають воду по рослинi
Транспорт електронiв при фотосинтезі Основні компоненти електронно-транспортного ланцюжка Фотосистема II
Фотосистема — сукупність СЗК, фотохімічного реакційного центру і переносників електрона. Світлозбиральний комплекс II містить 200 молекул хлорофілу а, 100 молекул хлорофілу b, 50 молекул каротиноїдів і 2 молекули феофітину. Реакційний центр фотосистеми II є пігмент-білковим комплексом, розташованим в тилакоїдних мембранах і оточеним СЗК. У ньому знаходиться димер хлорофілу а з максимумом поглинання при 680 нм (П680). На нього кінець-кінцем передається енергія кванта світла з СЗК, внаслідок чого один з електронів переходить у вищий енергетичний стан, зв'язок його з ядром ослаблюється, і збуджена молекула П680 стає сильним відновником.
П680 відновлює феофітин, надалі електрон переноситься на хінони, що входять до складу ФС II, і далі на пластохінони, транспортується у відновленій формі до b6f комплексу. Одна молекула пластохинона переносить 2 електрони і 2 протони, які беруться зі строми. Заповнення електронної вакансії в молекулі П680 відбувається за рахунок водиДля утворення однієї молекули кисню потрібно дві молекули води, що дають 4 електрони. Тому процес проводиться в 4 такти, і для його повного здійснення потрібно 4 кванти світла. Комплекс розташований з боку внутрішньотилакоїдного простору, і отримані 4 протони викидаються в нього.Таким чином, сумарний результат роботи ФС II — це окислення 2 молекул води за допомогою 4 квантів світла з утворенням 4 протонів у внутрішньотилакоїдному просторі і 2 відновлених пластохинонів в мембрані.
Фотосистема I
Світлозбиральний комплекс I містить приблизно 200 молекул хлорофілу.
У реакційному центрі першої фотосистеми знаходиться димер хлорофілу а з максимумом поглинання при 700 нм (П700). Після збудження квантом світла він відновлює первинний акцептор — хлорофіл а, той — вторинний (вітамін K1), після чого електрон передається на філохінон, від нього на ферредоксин, який і відновлює НАДФ за допомогою ферменту ферредоксин-НАДФ-редуктази. Білок пластоціанін, окислений в b6f комплексі, транспортується до реакційного центру першої фотосистеми з боку внутрішньотилакоїдного простору й відновлює окислений П700.
Циклічний і псевдоциклічний транспорт електрона
Крім повного нециклічного шляху електрона, описаного вище, виявлено циклічний і псевдоциклічний. Суть циклічного шляху полягає в тому, що феридоксин замість НАДФ відновлює пластохинон, який переносить його назад на b6f комплекс. В результаті утворюється більший протонний градієнт і більше АТФ, але не виникає НАДФН. При псевдоциклічному шляху феридоксин відновлює кисень, який надалі перетворюється на воду і може бути використаний у фотосистемі II. При цьому також не утворюється НАДФН.
Неюбовязково:
Система електронного транспорту не складається з ряду паралельних безперервних ланцюгів-переносників, кожний з яких зв’язує один реакційний центр ФС-ІІ з певним центром ФС-І. Очевидно, є пул, резервуар переносників, що міститься на відновлювальній стороні ФС-ІІ і відновлюється за рахунок багатьох електронно-транспортних ланцюгів.
Низький вихід флуоресценції відповідає окисленому станові Q аналогічно до дії хімічних окислювачів ФС-ІІ, наприклад, фериціаніду калію 2.
Отже, флуоресценція відображає хід відновлення первинного окислювача ФС-ІІ, Q; кінцевий рівень залежить від швидкості звільнення електрона з ФС-ІІ на електронний акцепторний пул, а також від швидкості зворотного окислення ФС-І. Адже врешті-решт ФС-І є окислювачем відновника ФС-ІІ. При наявності в пробі з хлоропластами надмірної кількості окислювачів типу фериціаніду вихід флуоресценції залишається низьким - на рівні F0.