
- •Особенности распространения волн различных диапазонов
- •Особенности распространения длинных волн
- •Особенности распространения средних волн
- •Особенности распространения коротких волн
- •Особенности распространения ультракоротких волн
- •Регулярные и нерегулярные явления в ионосфере
- •Антенны
- •Симметричные фидеры
- •Коаксиальные фидеры
- •Вибраторная антенна, как разомкнутая длинная линия
- •Волноводы и элементы волноводного тракта
- •Приемные антенны дв и св диапазонов
- •Рупорная антенна.
- •Рупорно-параболическая антенна
- •Перископическая антенна
- •Антенные решетки с электрическим сканированием
- •1. Виды сигналов
- •2.Формирователи импульса.
- •3.Дифференцирующие и интегрирующие цепи.
- •4.Диодные ограничители амплитуды.
- •4.1.Последовательные диодные ограничители.
- •4.2.Параллельные диодные ограничители. Ограничители с нулевым порогом ограничения.
- •4.3.Ограничители с ненулевым порогом ограничения.
- •4.4.Влияние паразитных емкостей.
- •5.Формирования импульсов в цепях с ударным возбуждением.
- •6.Формирующие импульсы.
- •7.Транзисторные ключи.
- •8.Транзисторный усилитель-ограничитель.
- •9.Внешнее запоминающее устройство(взу).
- •10.Устройство ввода, вывода.
- •11.Динамический режим работы транзисторного ключа.
- •12.Операционные усилители (оу)
- •13.Интегральные триггеры.
- •13.1.Асинхронный rs-триггер.
- •13.4.Одноступенчатый синхронный rs-триггер.
- •13.5Двухступенчатый синхронный rs-триггер.
- •14.Счетчики.
- •14.1.Вычитающие счетчики с последовательным переносом.
- •14.2.Счетчики с параллельным переносом.
- •15.Триггер Шмидта.
- •15.1.D и dv - триггеры
- •15.2.Триггер со счетным запуском (т-триггер).
- •15.3.Двухступенчатый rsc-триггер.
- •16.Мультивибратор.
- •16.1.Мультивибратор с корректирующими диодами.
- •16.2. Ждущий мультивибратор.
- •16.3.Синхронизированный мультивибратор.
- •16.4.Мультивибратор на логических элементах.
- •17.Последовательный регистр.
- •18.Блокинг-генератор.
- •1. Структурная схема эвм. Поколения эвм
- •2. Системы счисления.
- •3. Арифметические действия над двоичными числами
- •3.1 Вычитание с применением обратного кода.
- •3.2 Образование дополнительного кода.
- •4. Узлы эвм.
- •5. Сумматор
- •6. Последовательный сумматор
- •7. Арифметико - логическое устройство (алу)
- •8. Дешифратор
- •9. Преобразователи с цифровой индикацией
- •10. Преобразователь кода 8421 в 2421
- •11. Программируемая логическая матрица
- •12. Накапливающий сумматор
- •13. Основные микропроцессорные комплекты. Современные микропроцессоры (мп)
- •14. Типовая структура обрабатывающей части мп
- •15. Микро эвм на базе мп к580
- •16. Форматы команд и способы адресации
- •17. Центральный процессорный элемент к580
- •18. Система сбора данных на базе мп к580
- •19. Центральный процессорный элемент (цпэ) к589
- •20. Блок микропрограммного управления (бму).
- •21. Структурная схема и принцип действия блока микропрограммного управления (бму)
- •22. Блок приоритетного прерывания (бпп)
- •23. Схема ускоренного переноса (суп)
- •24. Схема одноразрядного сумматора с формированием цифры переноса в суп
- •25. Организация памяти эвм
- •26. Постоянные запоминающие устройства
- •27. Внешние запоминающие устройства (взу)
- •27.1 Метод записи без возврата к нулю
- •27.2 Фазовая модуляция.
- •27.3 Частотная модуляция (чм).
- •28. Устройства ввода - вывода информации
- •29. Вывод информации на дисплей
- •30. Вывод информации на телетайп
- •31. Интерфейс
- •32. Обмен данными между оперативной памятью и периферийными устройствами (пу)
- •33. Обмен данными по прерываниям
- •34. Специализированные устройства интерфейса. Ацп
- •35. Ацп с обратной связью (ос)
- •36. Ацп следящего типа.
- •37. Цап с суммированием напряжения на операционном усилителе (оу).
- •38. Применение микро эвм в системах автоматизированного управления (сау)
- •39. Схема суммирования напряжения на аттенюаторе сопротивлений
- •40. Применение микро эвм в приборах (спектрофотометр)
- •41. Программное обеспечение (по) эвм.
- •42. Операционная система эвм
- •43. Микропроцессорный комплект к 1804.
- •44. Ассемблер к580
- •1. Назначение и условия эксплуатации
- •2. Выбор варианта конструкции
- •3. Выбор материалов
- •4. Расчетная часть
- •4.1. Определение ориентировочной площади печатной платы
- •4.2. Расчет минимальной ширины проводника
- •5. Разработка топологии печатной платы
- •6. Описание технологичесКого процесСа изготовления печатной платы комбинированным позитивным методом
- •6.1. Резка заготовок
- •6.2. Пробивка базовых отверстий
- •6.3. Подготовка поверхности заготовок
- •6.4. Нанесение сухого пленочного фоторезиста
- •6.5. Нанесение защитного лака
- •6.6. Сверловка отверстий
- •6.7. Химическое меднение
- •6.8. Снятие защитного лака
- •6.9. Гальваническая затяжка
- •6.10. Электролитическое меднение и нанесение защитного покрытия пос-61
- •6.11 . Снятие фоторезиста
- •6.12. Травление печатной платы
- •6.13. Осветление печатной платы
- •6.14. Оплавление печатной платы
- •6.15. Механическая обработка
- •7. Обоснование технологичности конструкции
- •8. Расчет надежности схемы
- •9. Заключение
- •Приложение 1
- •10. Список литературы
- •Система передачи информации
- •Распространение радиоволн.
- •Радиотехнические сигналы.
- •Спектры сигналов.
- •Амплитудно-модулированный сигнал.
- •Частотная модуляция.
- •Фазовая модуляция
- •Импульсная модуляция.
- •Спектры. Последовательность видео и радио импульсов.
- •Свободные колебания в колебательном контуре.
- •Колебания в реальном колебательном контуре.
- •Последовательный колебательный контур.
- •Входное сопротивление последовательного колебательного контура.
- •Свойства резонанса в последовательном колебательном контуре.
- •Параллельный колебательный контур.
- •Способы включения параллельных контуров.
- •Связанные контуры.
- •Векторные диаграммы связанных контуров. Вносимые сопротивления.
- •Настройка связанных контуров.
- •Второй частный резонанс
- •Полный резонанс.
- •Резонансные кривые связанных контуров.
- •Фильтры.
- •Фильтры типа "к".
- •Полосовой фильтр.
- •Режекторный фильтр.
- •Пьезоэлектрический фильтр.
- •Электромеханический фильтр.
- •Фильтры типа "m".
- •Фильтры "r-c".
- •Цепи с распределенными параметрами.
- •Стоячие волны двухпроводных линий.
- •Волноводы.
- •Сочленение волновода.
- •Структурная схема рпду
- •Элементная база радиопередающих устройств
- •Статические характеристики
- •Генераторные радиолампы.
- •Динамические характеристики
- •Выходные каскады. Простая схема
- •Сложная схема
- •Совместная работа усилительных приборов.
- •Генераторы с самовозбуждением
- •Ж есткий режим
- •Обычная ам Однополосная ам
- •Структурная схема рпду
- •Элементная база радиопередающих устройств
- •Статические характеристики
- •Генераторные радиолампы.
- •Динамические характеристики
- •Выходные каскады. Простая схема Сложная схема
- •Совместная работа усилительных приборов.
- •Генераторы с самовозбуждением
- •Ж есткий режим
- •Обычная ам Однополосная ам
- •Структурная схема рпду
- •Элементная база радиопередающих устройств
- •Статические характеристики
- •Генераторные радиолампы.
- •Динамические характеристики
- •Выходные каскады. Простая схема Сложная схема
- •Совместная работа усилительных приборов.
- •Генераторы с самовозбуждением
- •Ж есткий режим
- •Обычная ам Однополосная ам
- •Теория автоматического регулирования Введение
- •Вращающиеся (поворотные) трансформаторы.
- •Электромагнитные муфты.
- •Понятия о структурной и функциональной схеме, элементарные динамические звенья (эдз).
Рупорно-параболическая антенна
Рупорно-параболическая антенна (РПА) состоит из пирамидального рупорного облучателя, к которому непосредственно присоединен рефлектор, являющийся частью параболоида вращения. Фокус рефлектора совмещен с горловиной рупора, вблизи которой находится центр сферической волны облучателя. Рефлектор преобразует сферическую волну рупора в плоскую и изменяет направлении движения волны на 900 . Плавный переход от волновода к рупору и отсутствие обратной реакции рефлектора на облучатель, который вынесен из поля отраженной волны, позволяет получить хорошее согласование РПА с волноводом в широком диапазоне частот. Соединение рупора с параболическим рефлектором в единую металлическую систему, открытую только в раскрыве, устраняет возможность непосредственного приема (или излучения) энергии рупором. Отсутствие металлических конструкций, затеняющих раскрыв антенны, обеспечивает получение большого защитного действия и малую интенсивность боковых лепестков.
Коэффициент
направленного действия антенны
определяется площадью раскрыва D
=
Габариты РПА определяются углом раствора рупора. Чем больше угол раствора, тем меньше объем антенны. Однако при этом ухудшается согласование рупора с волноводом и увеличивается неравномерность амплитудного распределения поля в раскрыве рупора по вертикали. Раствор рупора выбирается в пределах 25-450.
Для точной ориентировки ДН в пространстве антенна снабжается поворотным устройством, которое обеспечивает плавное вращение антенны в двух взаимно перпендикулярных плоскостях.
Поворотное устройство для вращения антенны в горизонтальной плоскости состоит их двух рам. Антенна закреплена в верхней раме, которая может вращаться по неподвижной нижней раме. В вертикальной плоскости антенна вращается с помощью винтовых стяжек.
Для согласования антенны с волноводом в широком диапазоне частот между ними ставят согласующий переход, который представляет собой рупор, сечение которого плавно изменяется по определенному закону.
Перископическая антенна
Для увеличения расстояния прямой видимости с учетом рельефа местности на радиорелейных линиях антенны устанавливают на опорах большой высоты 20 – 120 метров. Возможны различные схемы построения перископической антенны.
На рисунке 1 приведена схема перископической антенны, состоящей из параболического рефлектора (1) с облучателем (2), расположенным на земле, и плоского верхнего зеркала – переизлучателя (3), установленного на башне. Верхнее зеркало переизлучает энергию в направлении на приемную станцию, для этого оно устанавливается под углом 450 к вертикали. Раскрыв верхнего зеркала главного излучения обычно выполняются в форме круга. Такая форма раскрыва имеет меньший уровень боковых лепестков, чем прямоугольная. Этот вариант удобен при расположении нижнего параболического рефлектора на крыше здания, так как в этом случае сокращается длина фидера. В данной схеме построения перископической антенны нижнее зеркало трудно защитить от осадков (снег, гололед), которые могут вызывать значительные поглощения электромагнитной энергии.
В перископической антенне, показанной на рисунке 2, нижнее параболическое зеркало 1 имеет относительно большое фокусное расстояние. Это позволяет облучатель 4, в виде рупора, расположить непосредственно в помещении аппаратной, сократив длину фидера. В данной системе меньше обратная реакция рефлектора 1 на облучатель, поскольку, он вынесен из поля действий отраженной волны.
В перископической антенне на рисунке 3 нижнее зеркало 5 выполнено в виде части поверхности эллипсоида, в фокусах которого f1 и f2 располагаются рупорный облучатель 4 и центр верхнего зеркала 3. В этой антенне передача энергии от нижнего зеркала к верхнему происходит с большим коэффициентом полезного действия. Для создания синфазного поля в раскрыве верхнего зеркала оно должно быть параболическим с фокусом в фазовом центре рупорного облучателя. При больших высотах установки верхнего зеркала его кривизна должна быть мала и оно может быть выполнено плоским.
Достоинства: относительная простота ее конструкции, отсутствие длинных фидерных трактов, достаточно высокий КПД.
Недостатки: слабое защитное действие (50-55 дБ) повышенный уровень боковых лепестков в диаграмме направленности и прием нижним рефлектором сигналов, отдаленных от тела мачты.
Коэффициент усиления относительно изотропного излучения
G=G0вобл
= 4
вобл,
где
Sв – площадь раскрыва верхнего зеркала
- коэффициент полезного действия передачи энергии от нижнего зеркала к верхнему.
в – коэффициент использования площади раскрыва верхнего зеркала
обл – коэффициент полезного действия облучателя, обычно равный 0,8 – 0,9.