
- •Особенности распространения волн различных диапазонов
- •Особенности распространения длинных волн
- •Особенности распространения средних волн
- •Особенности распространения коротких волн
- •Особенности распространения ультракоротких волн
- •Регулярные и нерегулярные явления в ионосфере
- •Антенны
- •Симметричные фидеры
- •Коаксиальные фидеры
- •Вибраторная антенна, как разомкнутая длинная линия
- •Волноводы и элементы волноводного тракта
- •Приемные антенны дв и св диапазонов
- •Рупорная антенна.
- •Рупорно-параболическая антенна
- •Перископическая антенна
- •Антенные решетки с электрическим сканированием
- •1. Виды сигналов
- •2.Формирователи импульса.
- •3.Дифференцирующие и интегрирующие цепи.
- •4.Диодные ограничители амплитуды.
- •4.1.Последовательные диодные ограничители.
- •4.2.Параллельные диодные ограничители. Ограничители с нулевым порогом ограничения.
- •4.3.Ограничители с ненулевым порогом ограничения.
- •4.4.Влияние паразитных емкостей.
- •5.Формирования импульсов в цепях с ударным возбуждением.
- •6.Формирующие импульсы.
- •7.Транзисторные ключи.
- •8.Транзисторный усилитель-ограничитель.
- •9.Внешнее запоминающее устройство(взу).
- •10.Устройство ввода, вывода.
- •11.Динамический режим работы транзисторного ключа.
- •12.Операционные усилители (оу)
- •13.Интегральные триггеры.
- •13.1.Асинхронный rs-триггер.
- •13.4.Одноступенчатый синхронный rs-триггер.
- •13.5Двухступенчатый синхронный rs-триггер.
- •14.Счетчики.
- •14.1.Вычитающие счетчики с последовательным переносом.
- •14.2.Счетчики с параллельным переносом.
- •15.Триггер Шмидта.
- •15.1.D и dv - триггеры
- •15.2.Триггер со счетным запуском (т-триггер).
- •15.3.Двухступенчатый rsc-триггер.
- •16.Мультивибратор.
- •16.1.Мультивибратор с корректирующими диодами.
- •16.2. Ждущий мультивибратор.
- •16.3.Синхронизированный мультивибратор.
- •16.4.Мультивибратор на логических элементах.
- •17.Последовательный регистр.
- •18.Блокинг-генератор.
- •1. Структурная схема эвм. Поколения эвм
- •2. Системы счисления.
- •3. Арифметические действия над двоичными числами
- •3.1 Вычитание с применением обратного кода.
- •3.2 Образование дополнительного кода.
- •4. Узлы эвм.
- •5. Сумматор
- •6. Последовательный сумматор
- •7. Арифметико - логическое устройство (алу)
- •8. Дешифратор
- •9. Преобразователи с цифровой индикацией
- •10. Преобразователь кода 8421 в 2421
- •11. Программируемая логическая матрица
- •12. Накапливающий сумматор
- •13. Основные микропроцессорные комплекты. Современные микропроцессоры (мп)
- •14. Типовая структура обрабатывающей части мп
- •15. Микро эвм на базе мп к580
- •16. Форматы команд и способы адресации
- •17. Центральный процессорный элемент к580
- •18. Система сбора данных на базе мп к580
- •19. Центральный процессорный элемент (цпэ) к589
- •20. Блок микропрограммного управления (бму).
- •21. Структурная схема и принцип действия блока микропрограммного управления (бму)
- •22. Блок приоритетного прерывания (бпп)
- •23. Схема ускоренного переноса (суп)
- •24. Схема одноразрядного сумматора с формированием цифры переноса в суп
- •25. Организация памяти эвм
- •26. Постоянные запоминающие устройства
- •27. Внешние запоминающие устройства (взу)
- •27.1 Метод записи без возврата к нулю
- •27.2 Фазовая модуляция.
- •27.3 Частотная модуляция (чм).
- •28. Устройства ввода - вывода информации
- •29. Вывод информации на дисплей
- •30. Вывод информации на телетайп
- •31. Интерфейс
- •32. Обмен данными между оперативной памятью и периферийными устройствами (пу)
- •33. Обмен данными по прерываниям
- •34. Специализированные устройства интерфейса. Ацп
- •35. Ацп с обратной связью (ос)
- •36. Ацп следящего типа.
- •37. Цап с суммированием напряжения на операционном усилителе (оу).
- •38. Применение микро эвм в системах автоматизированного управления (сау)
- •39. Схема суммирования напряжения на аттенюаторе сопротивлений
- •40. Применение микро эвм в приборах (спектрофотометр)
- •41. Программное обеспечение (по) эвм.
- •42. Операционная система эвм
- •43. Микропроцессорный комплект к 1804.
- •44. Ассемблер к580
- •1. Назначение и условия эксплуатации
- •2. Выбор варианта конструкции
- •3. Выбор материалов
- •4. Расчетная часть
- •4.1. Определение ориентировочной площади печатной платы
- •4.2. Расчет минимальной ширины проводника
- •5. Разработка топологии печатной платы
- •6. Описание технологичесКого процесСа изготовления печатной платы комбинированным позитивным методом
- •6.1. Резка заготовок
- •6.2. Пробивка базовых отверстий
- •6.3. Подготовка поверхности заготовок
- •6.4. Нанесение сухого пленочного фоторезиста
- •6.5. Нанесение защитного лака
- •6.6. Сверловка отверстий
- •6.7. Химическое меднение
- •6.8. Снятие защитного лака
- •6.9. Гальваническая затяжка
- •6.10. Электролитическое меднение и нанесение защитного покрытия пос-61
- •6.11 . Снятие фоторезиста
- •6.12. Травление печатной платы
- •6.13. Осветление печатной платы
- •6.14. Оплавление печатной платы
- •6.15. Механическая обработка
- •7. Обоснование технологичности конструкции
- •8. Расчет надежности схемы
- •9. Заключение
- •Приложение 1
- •10. Список литературы
- •Система передачи информации
- •Распространение радиоволн.
- •Радиотехнические сигналы.
- •Спектры сигналов.
- •Амплитудно-модулированный сигнал.
- •Частотная модуляция.
- •Фазовая модуляция
- •Импульсная модуляция.
- •Спектры. Последовательность видео и радио импульсов.
- •Свободные колебания в колебательном контуре.
- •Колебания в реальном колебательном контуре.
- •Последовательный колебательный контур.
- •Входное сопротивление последовательного колебательного контура.
- •Свойства резонанса в последовательном колебательном контуре.
- •Параллельный колебательный контур.
- •Способы включения параллельных контуров.
- •Связанные контуры.
- •Векторные диаграммы связанных контуров. Вносимые сопротивления.
- •Настройка связанных контуров.
- •Второй частный резонанс
- •Полный резонанс.
- •Резонансные кривые связанных контуров.
- •Фильтры.
- •Фильтры типа "к".
- •Полосовой фильтр.
- •Режекторный фильтр.
- •Пьезоэлектрический фильтр.
- •Электромеханический фильтр.
- •Фильтры типа "m".
- •Фильтры "r-c".
- •Цепи с распределенными параметрами.
- •Стоячие волны двухпроводных линий.
- •Волноводы.
- •Сочленение волновода.
- •Структурная схема рпду
- •Элементная база радиопередающих устройств
- •Статические характеристики
- •Генераторные радиолампы.
- •Динамические характеристики
- •Выходные каскады. Простая схема
- •Сложная схема
- •Совместная работа усилительных приборов.
- •Генераторы с самовозбуждением
- •Ж есткий режим
- •Обычная ам Однополосная ам
- •Структурная схема рпду
- •Элементная база радиопередающих устройств
- •Статические характеристики
- •Генераторные радиолампы.
- •Динамические характеристики
- •Выходные каскады. Простая схема Сложная схема
- •Совместная работа усилительных приборов.
- •Генераторы с самовозбуждением
- •Ж есткий режим
- •Обычная ам Однополосная ам
- •Структурная схема рпду
- •Элементная база радиопередающих устройств
- •Статические характеристики
- •Генераторные радиолампы.
- •Динамические характеристики
- •Выходные каскады. Простая схема Сложная схема
- •Совместная работа усилительных приборов.
- •Генераторы с самовозбуждением
- •Ж есткий режим
- •Обычная ам Однополосная ам
- •Теория автоматического регулирования Введение
- •Вращающиеся (поворотные) трансформаторы.
- •Электромагнитные муфты.
- •Понятия о структурной и функциональной схеме, элементарные динамические звенья (эдз).
Связанные контуры.
Связанными называются контура, в которых источник вынужденных колебаний включается в первичный контур, а колебания возникают во вторичном контуре за счет связи с первичным контуром. Связь может осуществляться через общее магнитное или электрическое поле. Через магнитное поле осуществляется автотрансформаторная и трансформаторная связь.
Рассмотрим случай трансформаторной связи:
Ток первичного контура протекает по первой катушке, и создает магнитное поле, силовые линии которого охватывают вторую катушку и наводят в ней ЭДС самоиндукции. Эта ЭДС является источником вынужденных колебаний во вторичном контуре. Она вызывает появление тока во вторичном контуре, который создает магнитное поле второй катушки, это магнитное поле вызывает
появление ЭДС самоиндукции в первой катушке. Эта ЭДС вычитается из ЭДС генератора.
При автотрансформаторной связи источником вынужденных колебаний во вторичном контуре является падение напряжения на части катушки связи. Если колебания во вторичной обмотке возбуждаются за счет электрического поля, то возможна внутренняя или внешняя емкостная связь.
При внутренней емкостной связи источником колебаний во вторичном контуре является падение напряжения на Ссв.
При внешней емкостной связи ток первичного контура ответвляется через Ссв во вторичный.
Связь между контурами характеризуется коэффициентом связи – отношение ЭДС, наведенном во вторичном контуре к максимально возможной ЭДС, наведенной во вторичном контуре. Максимальная ЭДС в случае трансформаторной связи наводится в том случае, если обе катушки намотаны на один магнитный сердечник, т.е. все силовые магнитные линии первой
катушки пронизывают все витки второй катушки .
-
для внутренней емкостной связи
-
для внешней емкостной связи
Векторные диаграммы связанных контуров. Вносимые сопротивления.
Построим векторные диаграммы для трансформаторно связанных контуров.
1.
Так
как в первичном контуре резонанс, то
ток первичного контура совпадает с ЭДС
генератора. Этот ток создает магнитное
поле которое наводит
во вторичном контуре. Т.к. вторичный
контур настроен в резонанс, то ток
совпадает по фазе с
.
Т.к. вторичный контур является
последовательным, то его
.
протекает
по второй катушке и создает магнитное
поле, которое наводит в первичном контуре
ЭДС
,которое отстает от
на 90°
вычитается из ЭДС генератора, т.е. за
счет влияния вторичного контура ЭДС
действующая в первичном контуре меньше
ЭДС генератора. За счет связи со вторичным
контуром, активные потери в первичном
контуре увеличиваются. Величина потерь
зависит от связи со вторичным контуром
и сопротивления потерь вторичного
контура. Дополнительное сопротивление
потерь за счет ответвления части энергии
во вторичный контур, называется вносимым
сопротивлением.
2.
Построение
начинаем с Еген, т.к. первичный контур
настроен в резонанс, то
совпадает по фазе с Еген. Во вторичном
контуре индуктивная расстройка
следовательно
отстает от
на угол меньше 90°. Этот ток
создает магнитное поле которое наводит
в первичном контуре.
вычитается из Еген и образуется
.
Ток опережает , т.е. за счет связи со вторичным контуром в котором наблюдается индуктивная расстройка, в первичном появляется емкостная расстройка. Расстроенный вторичный контур как бы вносит в первичный контур дополнительное реактивное сопротивление, противоположное по знаку реактивному сопротивлению вторичного контура.
3.
Из
вторичного контура вносится в первичный
индуктивное сопротивление. Возможно
=Хвн,
т.е. вносимое индуктивное сопротивление
компенсирует емкостное сопротивление
первичного контура и в контуре наблюдается
резонанс.