
- •Вопросы к экзамену для бакалавров
- •Раздел 1. Механика и молекулярная физика
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4 Угловая скорость и угловое ускорение
- •2.2. Второй закон Ньютона
- •2.3. Третий закон Ньютона
- •2.4. Силы трения
- •Сила тяжести и вес. Невесомость
- •Сила всемирного тяготения
- •2.5. Закон сохранения импульса. Центр масс
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •4.1. Момент инерции
- •4.4. Момент импульса и закон его сохранения
- •7. Момент силы. Основной закон динамики вращательного движения. Кинетическая энергия вращательного движения.
- •4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
- •4.2. Кинетическая энергия вращения
- •5.1. Гармонические колебания и их характеристики
- •5.2. Механические гармонические колебания
- •5.4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5.5. Сложение взаимно перпендикулярных колебаний
- •Основы молекулярной физики и термодинамики
- •1. Молекулярно-кинетическая теория идеального газа
- •1.1. Опытные законы идеального газа
- •1.2. Уравнение Клапейрона-Менделеев
- •1.3. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Тогда давление газа, оказываемое им на стенку сосуда
- •Уравнение (1.11) с учетом (1.12) примет
- •1.4. Закон Максвелла для распределениямолекул идеального газа по скоростям
- •2.1. Число степеней свободы молекулы. Закон равномерного распределения энергиипо степеням свободы молекул
- •2.2. Первое начало термодинамики
- •2.3. Работа газа при изменении его объема
- •2.4. Теплоемкость
- •2.5. Применение первого начала термодинамики к изопроцессам
- •Тогда для произвольной массы газа получим
- •Раздел 2. Электричество. Постоянный ток. Магнетизм
- •1.2. Закон Кулона
- •1.3. Электростатическое ноле. Напряженность электростатического поля
- •1.4. Теорема Гаусса для электростатического поля
- •1.5. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •1.6. Циркуляция вектора напряженности электростатического поля
- •1.7. Потенциал электростатического поля
- •1.9. Вычисление разности потенциалов по напряженности поля
- •2.1. Электрический ток. Сила и плотность тока
- •2.3. Закон Ома. Сопротивление проводников
- •Действие магнитного поля на движущийся заряд
- •3.7. Движение заряженных частиц в магнитном поле
- •Работа по перемещению проводника и контура с током в магнитном поле
- •3.14. Закон Фарадой и его вывод из закона сохранения энергии
- •Раздел 3. Оптика и атомная физика
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Расчет интерференционной картины от двух источников
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Интерференция света в тонких пленках
- •Применение интерференции света
- •4.1. Принцип Гюйгенса-Френеля
- •4.2. Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Фраунгофера на одной щели
- •Дифракция Фраунгофера на дифракционной решетке
- •Поляризация света при отражении и преломлениина границе двух диэлектриков
- •Закон Стефана-Больцмана и смещение Вина
- •Планк вывел для универсальной функции Кирхгофа формулу
- •Модели атома Томсона и Резерфорда
- •Постулаты Бора
- •7.4. Спектр атома водорода по Бору
- •Линейчатый спектр атома водорода
- •Корпускулярно-волновой дуализм свойств вещества
- •Спин электрона. Спиновое число
- •Согласно общим выводам квантовой механики, спин квантуется по закону
- •11.2. Дефект массы и энергия связи ядра
Дифракция Фраунгофера на дифракционной решетке
|
Большое практическое значение имеет дифракция, наблюдаемая при прохождении света через одномерную дифракционную решетку - систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. Рассматривая дифракцию Фраунгофера на щели, видим, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели параллельно самой себе влево или вправо не изменит дифракционной картины. |
Следовательно, если перейти от одной щели ко многим (к дифракционной решетке), то дифракционные картины, создаваемые каждой щелью в отдельности, будут одинаковыми.
Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей. Рассмотрим дифракционную решетку. На рис. 18 для наглядности показаны только две соседние щели MN и CD. Если ширина каждой щели равна а, а ширина непрозрачных участков между щелями b, то величина d=а+b называется постоянной (периодом) дифракционной решетки.
Пусть плоская монохроматическая волна падает нормально к плоскости решетки. Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления одинаковы в пределах всей дифракционной решетки:
.
(4.8)
Очевидно, что в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, т.е прежние ( главные ) минимумы интенсивности будут наблюдаться в направлениях, определяемых условием
(
m=1,
2 ,3 ,...). (4.9)
Кроме
того, вследствие взаимной интерференции
световых лучей, посылаемых двумя щелями,
в некоторых направлениях они будут
гасить друг друга, т.е. возникнут
дополнительные
минимумы.
Очевидно, что эти дополнительные
минимумы будут наблюдаться в тех
направлениях, которым соответствует
разность хода лучей
…,
посылаемых, например, от крайних левых
точек М
и С
обеих щелей. Таким образом, с учетом
(4.8) условие
дополнительных минимумов
/2
(m=0,
1, 2 ,3 ,...).
И наоборот: действие одной щели будет усиливать действие другой, если
(
m=0,
1, 2 ,3 ,...), (4.10)
т.е. выражение (4.10 ) задает условие главных максимумов.
Таким образом, полная дифракционная картина для двух щелей определяется из условия: главные минимумы
,
Интенсивность света пропорциональна квадрату амплитуды, поэтому выражение (5.2) может быть получено из выражения (5.1).
Результаты опытов с кристаллами турмалина объясняются довольно просто, если исходить из предложенных условий пропускания света поляризатором. Первая пластинка турмалина пропускает колебания только определенного направления (на рис.23 это направление показано стрелкой АВ) т.е. преобразует естественный свет в поляризованный. Вторая же пластинка турмалина в зависимости от ее ориентации из поляризованного света пропускает большую или меньшую его часть, которая соответствует компоненту Е, параллельному оси второго турмалина. На рис.23 обе пластинки расположены так, что направления пропускаемых ими колебаний АВ и А’В’ перпендикулярны друг другу. В данном случае Т1 пропускает колебания, направленные по АВ, а Т2 их полностью гасит, т.е. за пластинку Т2 свет не проходит.
Пластинка Т1, преобразующая естественный свет в плоско поляризованный, является поляризатором. Пластинка Т2, служащая для анализа степени поляризации света, называется анализатором. Обе пластинки совершенно одинаковы. Если пропустить естественный свет через два поляризатора, плоскости которых образуют угол , то из первого выйдет плоскополяризованный свет, интенсивность которого I0=1/2 IОСТ
I=1/2 IОСТ cos (5.3)
49. Дифракция на пространственной решетке. Формула Вульфа-Брэггов.
Дифракция от трехмерной периодической структуры, такой как атомы в кристалле называется дифракцией Брегга. Это похоже на то, что происходит, когда волны рассеиваются на дифракционной решётке. Брегговская дифракция является следствием интерференции между волнами, отражёнными от кристаллических плоскостей. Условие возникновения интерференции определяется законом Вульфа-Брегга:
,
где
d — расстояние между кристаллическими плоскостями,
θ угол скольжения — дополнительный угол к углу падения,
λ — длина волны,
n (n = 1,2…) — целое число называемое порядком дифракции.
Брегговская дифракция может осуществляться при использовании света с очень маленькой длиной волны, такого как рентгеновское излучение, либо волны материи, такие как нейтроны и электроны, длины волн которых сравнимы или много меньше, чем межатомное расстояние. Получаемые данные дают информацию о межплоскостных расстояния, что позволяет вывести кристаллическую структуру. Дифракционный контраст, в электронных микроскопах и рентгеновских топографических устройствах, в частности, также является мощным инструментом для изучения отдельных дефектов и локальных полей деформации в кристаллах.
50. Поляризация света. Закон Малюса. Закон Брюстера.