
- •Вопросы к экзамену для бакалавров
- •Раздел 1. Механика и молекулярная физика
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4 Угловая скорость и угловое ускорение
- •2.2. Второй закон Ньютона
- •2.3. Третий закон Ньютона
- •2.4. Силы трения
- •Сила тяжести и вес. Невесомость
- •Сила всемирного тяготения
- •2.5. Закон сохранения импульса. Центр масс
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •4.1. Момент инерции
- •4.4. Момент импульса и закон его сохранения
- •7. Момент силы. Основной закон динамики вращательного движения. Кинетическая энергия вращательного движения.
- •4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
- •4.2. Кинетическая энергия вращения
- •5.1. Гармонические колебания и их характеристики
- •5.2. Механические гармонические колебания
- •5.4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5.5. Сложение взаимно перпендикулярных колебаний
- •Основы молекулярной физики и термодинамики
- •1. Молекулярно-кинетическая теория идеального газа
- •1.1. Опытные законы идеального газа
- •1.2. Уравнение Клапейрона-Менделеев
- •1.3. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Тогда давление газа, оказываемое им на стенку сосуда
- •Уравнение (1.11) с учетом (1.12) примет
- •1.4. Закон Максвелла для распределениямолекул идеального газа по скоростям
- •2.1. Число степеней свободы молекулы. Закон равномерного распределения энергиипо степеням свободы молекул
- •2.2. Первое начало термодинамики
- •2.3. Работа газа при изменении его объема
- •2.4. Теплоемкость
- •2.5. Применение первого начала термодинамики к изопроцессам
- •Тогда для произвольной массы газа получим
- •Раздел 2. Электричество. Постоянный ток. Магнетизм
- •1.2. Закон Кулона
- •1.3. Электростатическое ноле. Напряженность электростатического поля
- •1.4. Теорема Гаусса для электростатического поля
- •1.5. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •1.6. Циркуляция вектора напряженности электростатического поля
- •1.7. Потенциал электростатического поля
- •1.9. Вычисление разности потенциалов по напряженности поля
- •2.1. Электрический ток. Сила и плотность тока
- •2.3. Закон Ома. Сопротивление проводников
- •Действие магнитного поля на движущийся заряд
- •3.7. Движение заряженных частиц в магнитном поле
- •Работа по перемещению проводника и контура с током в магнитном поле
- •3.14. Закон Фарадой и его вывод из закона сохранения энергии
- •Раздел 3. Оптика и атомная физика
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Расчет интерференционной картины от двух источников
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Интерференция света в тонких пленках
- •Применение интерференции света
- •4.1. Принцип Гюйгенса-Френеля
- •4.2. Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Фраунгофера на одной щели
- •Дифракция Фраунгофера на дифракционной решетке
- •Поляризация света при отражении и преломлениина границе двух диэлектриков
- •Закон Стефана-Больцмана и смещение Вина
- •Планк вывел для универсальной функции Кирхгофа формулу
- •Модели атома Томсона и Резерфорда
- •Постулаты Бора
- •7.4. Спектр атома водорода по Бору
- •Линейчатый спектр атома водорода
- •Корпускулярно-волновой дуализм свойств вещества
- •Спин электрона. Спиновое число
- •Согласно общим выводам квантовой механики, спин квантуется по закону
- •11.2. Дефект массы и энергия связи ядра
Применение интерференции света
Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны 0. Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).
Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохождение света через каждую преломляющую поверхность линзы, например через границу стекло - воздух, сопровождается отражением 4 % падающего потока (при показателе преломления стекла 1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется, и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.
Для устранения указанных недостатков осуществляют так называемое просветление оптики. С этой целью на свободные поверхности линз наносят тонкие пленки с показателем преломления меньше, чем у материала линзы. При отражении света от границ раздела воздух - пленка и пленка - стекло возникает интерференция когерентных лучей 1’ и 2’ (рис. 13). Толщину пленки d и показатели преломления стекла nc и пленки n можно подобрать так, чтобы интерферирующие лучи гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода paвнa nd=0/4, тогда в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой газом длины волны 00,55 мкм. Поэтому объективы с просветленной оптикой кажутся голубыми. Создание высокоотраженных покрытий стало возможным лишь на основе многолучевой интерференции. В отличие от двухлучевой интерференции, которую рассматривали до сих пор, многолучевая интерференция возникает при наложении большого числа когерентных световых пучков.
Рис. 13
Явление интерференции также применяется в очень точных измери-тельных приборах, называемых интерферометрами. Которые основаны на одном и том же принципе и различаются лишь конструкционно. На рис. 14 представлена упрощенная схема интерферометра Майкельсона. Монохроматический свет от источника S падает под углом 45 на плоскопараллельную пластинку Р1. Сторона пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1 (отражается от посеребренного слоя) и луч 2 (проходит через него).
Луч 1 отражается от зеркала М1 и, возвращаясь обратно, вновь про-
ходит через пластинку Р1. Луч 2 идет к зеркалу М2, отражается от него, возвращается от него обратно и отражается от пластинки Р1 (луч 2`). Так как луч 1 проходит пластинку Р1 дважды, то для компенсации возникающей разности хода на пути луча 2 ставится пластинка Р2 (точно такая же, как и Р1, только не покрытая слоем серебра). Лучи 1’ и 2’ когерентны; следовательно, будет наблюдаться интерференция, результат которой зависит от оптической разности хода луча 1 от точки О до зеркала M1, и луча 2 от точки О до зеркала M2. При перемещении одного из зеркал на расстояние 0/4 разность хода обоих лучей увеличится на 0/2, и произойдет смена зрительного поля.
Следовательно, по незначительному смещению интерференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка м) измерения длин (измерения длины тел, длины световой волны, изменения длины тела при изменении температуры – интерференционный дилатометр).
Советский физик В.П. Линник использовал принцип действия интерферометра Майкельсона для создания микроинтерферометра (комбинация интерферометра и микроскопа), служащего для контроля чистоты обработки поверхности.
Интерферометры - очень чувствительные приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твёрдых тел) в зависимости от давления, температуры, примесей и т.д. Такие интерферометры получили название интерференционных рефрактометров.
Применение интерферометров очень многообразно. Кроме перечис-ленного, они используются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, а также распространения света в движущихся телах (это привело к фундаментальным изменениям представлений о пространстве и времени). С помощью интерферометра Майкельсон впервые провел сравнение международного эталона метра с длиной стандартной световой волны.
45. Явление дифракции света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Радиус зоны Френеля для плоской и для сферической волны.