
- •Вопросы к экзамену для бакалавров
- •Раздел 1. Механика и молекулярная физика
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4 Угловая скорость и угловое ускорение
- •2.2. Второй закон Ньютона
- •2.3. Третий закон Ньютона
- •2.4. Силы трения
- •Сила тяжести и вес. Невесомость
- •Сила всемирного тяготения
- •2.5. Закон сохранения импульса. Центр масс
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •4.1. Момент инерции
- •4.4. Момент импульса и закон его сохранения
- •7. Момент силы. Основной закон динамики вращательного движения. Кинетическая энергия вращательного движения.
- •4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
- •4.2. Кинетическая энергия вращения
- •5.1. Гармонические колебания и их характеристики
- •5.2. Механические гармонические колебания
- •5.4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5.5. Сложение взаимно перпендикулярных колебаний
- •Основы молекулярной физики и термодинамики
- •1. Молекулярно-кинетическая теория идеального газа
- •1.1. Опытные законы идеального газа
- •1.2. Уравнение Клапейрона-Менделеев
- •1.3. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Тогда давление газа, оказываемое им на стенку сосуда
- •Уравнение (1.11) с учетом (1.12) примет
- •1.4. Закон Максвелла для распределениямолекул идеального газа по скоростям
- •2.1. Число степеней свободы молекулы. Закон равномерного распределения энергиипо степеням свободы молекул
- •2.2. Первое начало термодинамики
- •2.3. Работа газа при изменении его объема
- •2.4. Теплоемкость
- •2.5. Применение первого начала термодинамики к изопроцессам
- •Тогда для произвольной массы газа получим
- •Раздел 2. Электричество. Постоянный ток. Магнетизм
- •1.2. Закон Кулона
- •1.3. Электростатическое ноле. Напряженность электростатического поля
- •1.4. Теорема Гаусса для электростатического поля
- •1.5. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •1.6. Циркуляция вектора напряженности электростатического поля
- •1.7. Потенциал электростатического поля
- •1.9. Вычисление разности потенциалов по напряженности поля
- •2.1. Электрический ток. Сила и плотность тока
- •2.3. Закон Ома. Сопротивление проводников
- •Действие магнитного поля на движущийся заряд
- •3.7. Движение заряженных частиц в магнитном поле
- •Работа по перемещению проводника и контура с током в магнитном поле
- •3.14. Закон Фарадой и его вывод из закона сохранения энергии
- •Раздел 3. Оптика и атомная физика
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Расчет интерференционной картины от двух источников
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Интерференция света в тонких пленках
- •Применение интерференции света
- •4.1. Принцип Гюйгенса-Френеля
- •4.2. Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Фраунгофера на одной щели
- •Дифракция Фраунгофера на дифракционной решетке
- •Поляризация света при отражении и преломлениина границе двух диэлектриков
- •Закон Стефана-Больцмана и смещение Вина
- •Планк вывел для универсальной функции Кирхгофа формулу
- •Модели атома Томсона и Резерфорда
- •Постулаты Бора
- •7.4. Спектр атома водорода по Бору
- •Линейчатый спектр атома водорода
- •Корпускулярно-волновой дуализм свойств вещества
- •Спин электрона. Спиновое число
- •Согласно общим выводам квантовой механики, спин квантуется по закону
- •11.2. Дефект массы и энергия связи ядра
1.4. Закон Максвелла для распределениямолекул идеального газа по скоростям
При выводе основного уравнения молекулярно-кинетической теории молекулам задавали различные скорости. В результате многократных соударений скорость каждой молекулы изменяется по модулю и направлению. Однако из-за хаотического движения молекул все направления движения молекул являются равновероятными, т.е. в любом направлении в среднем движется одинаковое число молекул.
По
молекулярно-кинетической теории, как
бы не изменялась скорость молекул при
столкновениях, средняя квадратичная
скорость молекул массой m0
в газе, находящемся в состоянии равновесия
при T=const,
остается постоянной и равной
.
Это объясняется тем, что в газе,
находящемся в состоянии равновесия,
устанавливается некоторое стационарное,
не меняющееся со временем, распределение
молекул по скоростям, которое подчиняется
вполне определенному статистическому
закону. Этот закон теоретически выведен
Дж.Максвеллом.
При выводе закона распределения молекул по скоростям Максвелл предполагал, что газ состоит из очень большого числа N тождественных молекул, находящихся в состоянии беспорядочного движения при одинаковой температуре. Предполагалось также, что силовые поля на газ не действуют.
Закон Максвелла описывается некоторой функцией f( ), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные d , то на каждый интервал скорости будет приходиться некоторое число молекул dN( ), имеющих скорость, заключенную в этом интервале. Функция f( ) определяет относительное число
молекул
,
скорости которых лежат в интервале от
до
+d
,
т.е.
,
откуда
Применяя методы теории вероятности, Максвелл нашел функцию
f( )- закон для распределения молекул идеального газа по скоростям:
.
(1.19)
Из (1.19) видно, что конкретный вид функции зависит от рода газа (от массы молекулы) и от параметра состояния (от температуры Т).
График функции (1.19) приведен на рис. 51.
Рис. 51
Он
подтвержден экспериментально опытом
Штерна. Т.к. при возраста-
нии
множитель
уменьшается быстрее, чем растет множитель
2
, то функция f(
),
начинаясь от нуля, достигает максимума
при
В
и затем асимптотически стремится к
нулю. Кривая несимметрична относительно
В.
Относительное
число молекул
,
скорости которых лежат в интервале от
до
+d
,
находится как площадь более светлой
полоски на рис.51. Площадь, ограниченная
кривой распределения и осью абсцисс,
равна единице. Это означает, что функция
f(
)
удовлетворяет условию
нормировки
.
Скорость, при которой функция распределения молекул идеального газа по скоростям максимальна, называется наиболее вероятной скоростью. Значение наиболее вероятной скорости можно найти продифференцировав выражение (1.19) по аргументу , приравняв результат нулю и используя условия для максимума выражения f( ):
.
Значения =0 и = соответствуют минимумам выражения (1.19), а значение , при котором выражение в скобках становится равным нулю, и есть искомая наиболее вероятная скорость В:
.
(1.20)
Из формулы (1.20) следует, что при повышении температуры максимум функции распределения молекул по скоростям (рис. 52) сместится вправо.
Рис. 52 |
Однако площадь, ограниченная кривой, остается неизменной, поэтому при повышении температуры кривая распределения молекул по скоростям будет растягиваться и понижаться. Средняя скорость молекулы < > |
(средняя арифметическая скорость) определяется по формуле
.
Подставляя сюда f( ) и интегрируя, получим
.
(1.21)
Скорости, характеризующие состояние газа: наиболее вероятная скорость
;
средняя
=1,13
;
средняя
квадратичная
(рис.51).
16. Число степеней свободы молекулы. Закон Больцмана о равномерном распределении энергии по степеням свободы молекул.