
- •Вопросы к экзамену для бакалавров
- •Раздел 1. Механика и молекулярная физика
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4 Угловая скорость и угловое ускорение
- •2.2. Второй закон Ньютона
- •2.3. Третий закон Ньютона
- •2.4. Силы трения
- •Сила тяжести и вес. Невесомость
- •Сила всемирного тяготения
- •2.5. Закон сохранения импульса. Центр масс
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •4.1. Момент инерции
- •4.4. Момент импульса и закон его сохранения
- •7. Момент силы. Основной закон динамики вращательного движения. Кинетическая энергия вращательного движения.
- •4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
- •4.2. Кинетическая энергия вращения
- •5.1. Гармонические колебания и их характеристики
- •5.2. Механические гармонические колебания
- •5.4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5.5. Сложение взаимно перпендикулярных колебаний
- •Основы молекулярной физики и термодинамики
- •1. Молекулярно-кинетическая теория идеального газа
- •1.1. Опытные законы идеального газа
- •1.2. Уравнение Клапейрона-Менделеев
- •1.3. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Тогда давление газа, оказываемое им на стенку сосуда
- •Уравнение (1.11) с учетом (1.12) примет
- •1.4. Закон Максвелла для распределениямолекул идеального газа по скоростям
- •2.1. Число степеней свободы молекулы. Закон равномерного распределения энергиипо степеням свободы молекул
- •2.2. Первое начало термодинамики
- •2.3. Работа газа при изменении его объема
- •2.4. Теплоемкость
- •2.5. Применение первого начала термодинамики к изопроцессам
- •Тогда для произвольной массы газа получим
- •Раздел 2. Электричество. Постоянный ток. Магнетизм
- •1.2. Закон Кулона
- •1.3. Электростатическое ноле. Напряженность электростатического поля
- •1.4. Теорема Гаусса для электростатического поля
- •1.5. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •1.6. Циркуляция вектора напряженности электростатического поля
- •1.7. Потенциал электростатического поля
- •1.9. Вычисление разности потенциалов по напряженности поля
- •2.1. Электрический ток. Сила и плотность тока
- •2.3. Закон Ома. Сопротивление проводников
- •Действие магнитного поля на движущийся заряд
- •3.7. Движение заряженных частиц в магнитном поле
- •Работа по перемещению проводника и контура с током в магнитном поле
- •3.14. Закон Фарадой и его вывод из закона сохранения энергии
- •Раздел 3. Оптика и атомная физика
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Расчет интерференционной картины от двух источников
- •Если оптическая разность хода равна целому числу волн в вакууме
- •Интерференция света в тонких пленках
- •Применение интерференции света
- •4.1. Принцип Гюйгенса-Френеля
- •4.2. Метод зон Френеля. Прямолинейное распространение света
- •Дифракция Фраунгофера на одной щели
- •Дифракция Фраунгофера на дифракционной решетке
- •Поляризация света при отражении и преломлениина границе двух диэлектриков
- •Закон Стефана-Больцмана и смещение Вина
- •Планк вывел для универсальной функции Кирхгофа формулу
- •Модели атома Томсона и Резерфорда
- •Постулаты Бора
- •7.4. Спектр атома водорода по Бору
- •Линейчатый спектр атома водорода
- •Корпускулярно-волновой дуализм свойств вещества
- •Спин электрона. Спиновое число
- •Согласно общим выводам квантовой механики, спин квантуется по закону
- •11.2. Дефект массы и энергия связи ядра
7. Момент силы. Основной закон динамики вращательного движения. Кинетическая энергия вращательного движения.
4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
Моментом силы относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса - вектора , проведенного из точки О в точку А приложения cилы, на силу (рис.22): М=[ ] .
Рис. 22 |
Здесь
M=Fsin=Fl ,где -угол между и ; rsin=l –кратчайшее расстояние между линией действия силы и точкой О - плечо силы. |
Моментом силы относительно неподвижной оси является скалярная величина Mz, равная проекции на эту ось вектора момента силы, определенного относительно произвольной точки О данной оси z (рис. 23). Значение момента Mz не зависит от выбора положения точки О на оси z.
Если ось z совпадает с направлением вектора , то момент, силы представляется в виде вектора, совпадающего с осью: Мz=[ ]z.
Найдем выражение для работы при вращении тела (рис. 24). Пусть сила приложена в точке В, находящейся от оси вращения на расстоянии r, – угол между направлением силы и радиусом-вектором . Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела.
При повороте тела на бесконечно малый угол d точка приложения В проходит путь ds=rd, и работа равна произведению проекции силы на направление смещения на величину смещения:
dA=Fsinrd. (4.4)
Так как Frsin=Fl=Mz – момент силы относительно оси Z, то можно записать, что dA=Mzd. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота.
Работа
при вращении тела идет на увеличение
его кинетической энергии: dA=dT,
но
,
поэтому
или
.
Учитывая,
что
,
получим
.
(4.5)
Уравнение (4.5) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси. Можно показать, что если ось вращения совпадает с главной осью инерции, проходящей через центр масс, то имеет место векторное равенство
,
где J - главный момент инерции тела (момент инерции относительно главной оси).
4.2. Кинетическая энергия вращения
Рассмотрим абсолютно твердое тело, вращающееся около неподвижной оси z, проходящей через него (рис.21).
Рис. 21 |
Мысленно
разобьем это тело на маленькие объемы
с элементарными массами
|
Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:
.
(4.2)
Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его элементарных объемов:
или
Используя выражение (4.2) , получим
,
где Jz -момент инерции тела относительно оси z . Таким образом, кинетическая энергия вращающегося тела равна
.
(4.3)
Из
сравнения формулы (4.3) с выражением
(3.4) для кинетической
энергии тела,
движущегося поступательно
следует, что момент инерции вращательного
движения - мера инертности тела. Формула
(4.3) справедлива для тела, вращающегося
вокруг неподвижной оси. В случае
цилиндра, скатывающегося с наклонной
плоскости без скольжения, энергия
движения складывается из энергии
вращения и энергии поступательного
движения.
+
,
где m - масса скатывающегося тела; vс - скорость центра масс тела; Jc - момент инерции тела относительно оси, проходящей через центр его масс; - угловая скорость тела.
8. Свободные гармонические колебания. Уравнение колебаний. Амплитуда. Период, фаза, частота. Скорость и ускорение. Дифференциальное уравнение свободных незатухающих колебаний.