
- •Раздел I. Общая физиология.
- •Раздел II. Частная физиология.
- •Раздел III. Методы исследования физиологических
- •7. Потенциал действия и его фазы. Изменение проницаемости калиевых, натриевых и кальциевых каналов в процессе формирования потенциала действия.
- •4) Трансформация возбуждений.
- •1.Восприятие, запечатление и запоминание.
- •20.1. Характеристика и классификация адаптивных механизмов
- •Раздел II. Частная физиология.
- •1. Импульсы от рефлексогенных зон:
- •№46 Полостное и пристеночное пищеварение в тонкой кишке
- •№47 Пищеварение в толстом кишечнике.
- •Моторная функция толстого кишечника. Дефекация.
- •Дополнительно: Поджелудочная железа
- •№71 Ствол мозга
- •№72 Средний мозг
- •№89 Вестибулярная система
- •Дополнительно: Обонятельная система
- •Дополнительно: Вкусовая система
- •№95 Висцеральная система
- •2)Информационная функция
- •3)Функция установление порога болевой чувствительности
- •Раздел III. Методы исследования физиологических функций. №1??? Методы изучения возбудимых клеток
- •Дополнительно: Гематокрит. Норма и отклонения
- •Гематокрит выше нормы
- •Гематокрит ниже нормы
- •Время свертывания крови Метод Моравица
- •Глава 4 анализ электрокардиограммы
- •Электрокардиограмма
- •Изменение тонов сердца
- •II тон усилен вследствие:
- •№23 Время кругооборота крови
- •№27??? Определение жизненной ёмкости легких (тест жел)
- •№30 Методика изучения слюноотделения у животных и человека
- •Методы изучения пищеварительных функций. Экспериментальные методы
4) Трансформация возбуждений.
•4А. Облегчение проведения возбуждения,
т.е. каждый последующий импульс возбуждения проводится через синапс при более облегченных условиях его формирования, обусловленных предшествующими процессами возбуждения.
•4Б. Проторение проведения возбуждения через синапс.
(т.е. каждый предшествующий импульс возбуждения создает для последующих более облегченные условия формирования). Свойства облегчения и проторения возбуждения связаны с формированием в синапсах в процессе их возбуждения специальных белков памяти.
•4В. Низкая функциональная лабильность
так, н-м синапс обладает лабильностью до 70 имп/сек. Наиболее высоколабильными в организме являются слуховые и диафрагмальные нервы. Их ф. лабильность превышает 1000 имп/сек. Поперечно –полосатые мышцы проводят без трансформации до 200 –300 имп/сек. Соматические нервы, иннервирующие поперечно –полосатые мышцы способны проводить без трансформации в среднем 500 имп/сек.
•4Г. Повышенная утомляемость синапса.
(Д-во: при ритмическом непрямом электрическом раздражении н-м препарата можно некоторое время наблюдать утомление ответа мышечного сокращения. Однако при прямом электр. раздражении мышцы она хорошо сокращается. Нерв практически не утомляем. Т.о. утомление н-м препарата при непрямом раздражении связано с первичным утомлением н-м синапса. 5)Синапсы обладают повышенной и избирательной чувствительностью по отношению к хим. и фарм. веществам.
Примером хим. влияния на н-м синапс является действие кураре (избирательно действует на постсинаптич. мембрану поперечно –полосатой мышцы и блокирует процесс перехода местного потенциала в распространяющийся.
•Установлены хим. вещества, избирательно действующие на химические процессы распространения возбуждения от постсинаптической мембраны к ядру клеток постсинаптической области, а также на процессы синтеза белка геномом ядер этих клеток.
•Синапсы в процессах жизнедеятельности играют важную роль, поскольку действие фарм. веществ в первую очередь осуществляется на специфические синаптические образования.
Электрические синапсыбыли открыты Дж. Экклсом в 1961г.
•В организме человека электрических синапсов значительно меньше, чем химических, причем в эмбриогенезе их больше, чем в постнатальном периоде. Они встречаются в структурах ЦНС (ядра тройничного, глазодвигательного нервов, вестибулярные ядра Дейтерса), вставочные диски (нексусы кардиомиоцитов) также пример электрических синапсов.
Электрические синапсы
•Главным отличиемих от химических является отсутствие посредника; осуществляется прямая передача потенциала действия с одной клетки на другую.
•Главным структурным отличиемможно считать узкую синаптическую щель (2–4 нм). Через нее в электрических синапсах протянуты белковые каналы (диаметр до 2 нм), способные пропускать ионы и низкомолекулярные вещества.
•ПД не затухает в межклеточной жидкости синаптической щели, входит внутрь иннервируемой клетки, затем через постсинаптическую мембрану выходит на ее поверхность, вызывая деполяризацию.
•Электрические синапсы обладают рядом преимуществ перед химическими(высокая лабильность из-за малой синаптической задержки –0,1 мсек, низкая утомляемость, надежность передачи), но и обладают
•недостатками, главным среди которых можно назвать почти полное отсутствие одностороннего проведения возбуждения. Возможно, именно это сыграло главную роль в том, что в процессе эволюции электрические синапсы большей частью возникли из нервных систем высших позвоночных.
Синапсы с электрической передачей возбуждения
Всем синапсам электрического типа свойственны
•а) очень узкая синаптическая щель (5 нм, иначе 50 А) и
•б) очень низкое удельное сопротивление пре-и постсинаптических мембран, что связано с существованием транссинаптических каналов (D=l -1,5 нм), проходящих поперек синаптической щели в специальных тельцах, связывающих пре-и постсинаптическую мембраны
№23 Железистый эпителий представлен секреторными (железистыми) клетками — гландулоцитами. Они синтезирует и выделяют специфические продукты (секрет). Клетки железистого эпителия образуют паренхиму многоклеточных желез и одноклеточные железы. Железы подразделяются на экзокринные, имеющие выводные протоки, и эндокринные, не имеющие выводных протоков. Смешанные железы содержат в себе и эндокринную, и экзокринную части (например, поджелудочная железа). Гландулоциты лежат на базальной мембране. Форма их весьма разнообразна и меняется в зависимости от фазы секреции. В цитоплазме гландулоцитов, которые вырабатывают секреты белкового характера (например, пищеварительные ферменты), хорошо развита гранулярная эндоплазматическая сеть. В клетках, синтезирующих небелковые секреты (липиды, стероиды), выражена агранулярная эндоплазматическая сеть. Многочисленные митохондрии накапливаются в местах наибольшей активности клеток, т.е. там, где образуется секрет. Число секреторных гранул в цитоплазме клеток колеблется в связи с фазами секреторного процесса. Цитолемма имеет различное строение на боковых, базальных и апикальных поверхностях клеток. На боковых поверхностях она образует десмосомы и плотные запирающие контакты. Последние окружают верхушечные (апикальные) части клеток, отделяя, таким образом, межклеточные щели от просвета железы. На базальных поверхностях клеток цитолемма образует небольшое число узких складок, проникающих в цитоплазму. Такие складки особенно хорошо развиты в клетках желез, выделяющих секрет, богатый солями, например в протоковых клетках слюнных желез. Апикальная поверхность клеток покрыта микроворсинками.
Фазы и типы секреции. Периодические изменения железистой клетки, связанные с образованием, накоплением, выделением секрета и восстановлением ее для дальнейшей секреции, получили название секреторного цикла. Секреторный цикл состоит из 4 фаз: – поступление веществ в клетку, – синтез и накопление секрета, – выведение секрета, – восстановление структуры клеток. Для образования секрета из крови и лимфы в железистые клетки со стороны базальной поверхности поступают различные неорганические соединения, вода и низкомолекулярные органические вещества: аминокислоты, моносахариды, жирные кислоты. Иногда путем пиноцитоза в клетку проникают более крупные молекулы органических веществ, например белки. Из этих продуктов в эндоплазматической сети синтезируются секреты. Они по эндоплазматической сети перемещаются в зону аппарата Гольджи, где постепенно накапливаются, подвергаются химической перестройке и оформляются в виде гранул, которые выделяются из гландулоцитов. Важная роль в перемещении секреторных продуктов в гландулоцитах и их выделении принадлежит элементам цитоскелета — микротрубочкам и микрофиламентам. Однако разделение секреторного цикла на фазы по существу условно, так как они накладываются друг на друга. Так, синтез секрета и его выделение протекают практически непрерывно, но интенсивность выделения секрета может то усиливаться, то ослабевать. При этом выделение секрета (экструзия) может быть различным: в виде гранул или путем диффузии без оформления в гранулы, либо путем превращения всей цитоплазмы в массу секрета. Например, после принятия пищи в поджелудочной железе происходит быстрое выбрасывание из железистых клеток всех секреторных гранул, и затем в течение 2 ч и более секрет синтезируется в клетках без оформления в гранулы и выделяется диффузным путем.
Механизм выделения секрета в различных железах неодинаковый, в связи с чем различают три типа секреции: - мерокриновый (или эккриновый); - апокриновый; - голокриновый. При мерокриновом типе секреции железистые клетки полностью сохраняют свою структуру (например, клетки слюнных желез). При апокриновом типе секреции происходит частичное разрушение железистых клеток (например, клеток молочных желез), т.е. вместе с секреторными продуктами отделяются либо апикальная часть цитоплазмы железистых клеток, либо верхушки микроворсинок. Третий, голокриновый тип секреции сопровождается накоплением секрета в цитоплазме и полным разрушением железистых клеток (например, клеток сальных желез кожи). Восстановление структуры железистых клеток происходит либо путем внутриклеточной регенерации (при меро- и апокриновой секреции), либо с помощью клеточной регенерации, т.е. деления и дифференцировки камбиальных клеток (при голокриновой секреции). Регуляция секреции идет через нервные и гуморальные механизмы: первые действуют через высвобождение клеточного кальция, а вторые — преимущественно путем накопления цАМФ (циклического аденозин-монофосфата). При этом в железистых клетках активизируются ферментные системы и метаболизм, сборка микротрубочек и сокращение микрофиламентов, участвующих во внутриклеточном транспорте и выведении секрета. Железы – органы животных и человека, вырабатывающие и выделяющие специфические вещества, обычно участвующие в физиологических отправлениях организма. Одни железы, выделяющие свои продукты на поверхность тела или слизистых оболочек через выводные протоки, называются железами внешней секреции, или экзокринными; их продукты называются секретами. Другие — эндокринные (инкреторные), или железы внутренней секреции, — не имеют выводных протоков; вырабатываемые ими продукты (инкреты, или гормоны) выделяются в кровь или лимфу и разносятся с ними по организму. Некоторые железы избирательно поглощают из крови находящиеся в ней конечные продукты диссимиляции, концентрируют их и выделяют наружу, предотвращая отравление ими организма. К таким концентрирующим железам относятся почки, потовые, отчасти слёзные железы; выделяемые ими вещества принято называть экскретами. Образование и выделение продуцируемых веществ протекают в основном одинаково во всех железах, и поэтому термином «секрет» часто обозначают все секретируемые вещества — секреты, инкреты и экскреты, независимо от их физиологического значения. Экзокринные железы и большинство эндокринных развиваются как производные эпителиальных (пограничных) тканей; некоторые эндокринные железы могут происходить из др. тканей. Так, интерстициальные клетки половых желез (участвующие в выработке половых гормонов) возникают из мезенхимы. Хромаффинные клетки (составляющие мозговую часть надпочечников и т. н. параганглии), продуцирующие катехоламины, являются видоизменёнными нервными (симпатическими) клетками. К ним близки нейросекреторные клетки, которые, будучи нервными по своей природе, способны вырабатывать и выделять в кровь секреторные продукты; у позвоночных животных и человека такие клетки сосредоточены в гипоталамусе. В построении некоторых эндокринных желез (эпифиз, задняя доля гипофиза) участвует нейроглия. Основная функция эпителия — обмен веществ между организмом и средой, в том числе выделение продуктов, вырабатываемых клетками эпителия. В некоторых эпителиальных клетках последняя функция становится доминирующей, и они превращаются в железистые клетки, или одноклеточные железы (например, бокаловидные клетки). Иногда все клетки определённого участка эпителиального пласта дифференцируются в железистые и начинают выделять секрет — возникает железистое поле (например, эпителий слизистой оболочки желудка). В результате увеличения числа железистых клеток в данном участке эпителиального пласта образуется внедряющаяся в подлежащую соединительную ткань железистая ямка, которая в ходе дальнейшего углубления принимает вид трубочки, обособляющейся от эпителиального пласта. Выработка секрета сосредоточивается в дистальной части этого зачатка, которая дифференцируется в концевой (секреторный) отдел, или аденомер, формирующейся железы. Проксимальная же часть железистой трубки становится выводным протоком, клетки которого остаются малодифференцированными (в связи с чем выводные протоки сохраняют способность к пролиферации и во многих случаях оказываются источником роста и регенерации желез). По форме аденомеров (удлинённой или округлой) железы делят на трубчатые и альвеолярные (шаровидные аденомеры, нередко называемые ацинусами). Железы, состоящие из одного аденомера (в т. ч. и разветвленного) и неветвящегося выводного протока, называемые простыми (трубчатыми или альвеолярными), например фундальные и пилорические железы желудка, железы матки.
№24 Физиологической регуляцией называется управление функциями организма с целью его приспособления к условиям внешней среды. Регуляция функций организма является основой обеспечения постоянства внутренней среды организма и его адаптации к изменяющимся условиям существования и осуществляется по принципу саморегуляции путем формирования функциональных систем. Функцией систем и организма в целом называется деятельность, направленная на сохранение целостности и свойств системы. Функции характеризуются количественно и качественно. Основой физиологической регуляции является передача и обработка информации. Под термином "информация" понимается любое сообщение о фактах и событиях, происходящих в окружающей среде и организме человека. Под саморегуляцией понимают такой вид регуляции, когда отклонение регулируемого параметра является стимулом для его восстановления. Для осуществления принципа саморегуляции необходимо взаимодействие следующих компонентов функциональных систем.
•Регулируемый параметр (объект регуляции, константа).
•Аппараты контроля, следящие за отклонением данного параметра под воздействием внешних и внутренних факторов.
•Аппараты регуляции, обеспечивающие направленное действие на деятельность органов, от которых зависит восстановление отклонившегося параметра.
•Аппараты исполнения - органы и системы органов, изменение деятельности которых в соответствии с регуляторными влияниями приводит к восстановлению исходной величины параметра. "Обратная афферентация несет информацию в аппараты регуляции о достижении или не достижении полезного результата, о возвращении или невозвращении отклонившегося параметра к норме. Таким образом регуляция функций осуществляется системой, которая состоит из отдельных элементов: управляющего устройства (ЦНС, эндокринная клетка), каналов связи (нервы, жидкая внутренняя среда), датчиков, воспринимающих действие факторов внешней и внутренней среды (рецепторы), структур, воспринимающих информацию выходных каналов (рецепторы клеток) и исполнительных органов.
Система регуляции в организме представляет трехуровневую структуру. Первый уровень регуляции состоит из относительно автономных локальных систем, поддерживающих константы. Второй уровень системы регуляции обеспечивает приспособительные реакции в связи с изменениями внутренней среды, на этом уровне обеспечивается оптимальный режим работы физиологических систем для адаптации организма к внешней среде. Третий уровень регуляции реализуется поведенческими реакциями организма и обеспечивает оптимизацию его жизнедеятельности.
Различают четыре вида регуляции: механическую, гуморальную, нервную, нервно-гуморальную.
Физическая (механическая) регуляция реализуется через механические, электрические, оптические, звуковые, электромагнитные, тепловые и другие процессы (например, заполнение дополнительным объемом крови полостей сердца приводит к большей степени растяжения их стенок и к более сильному сокращению миокарда). Наиболее надежными механизмами регуляции являются местные. Они реализуются путем физико-химического взаимодействия структур органа. Например, в работающей мышце в результате выделения миоцитами химических метаболитов и тепла происходит расширение кровеносных сосудов, что сопровождается возрастанием объемной скорости кровотока и увеличением снабжения миоцитов питательными веществами и кислородом. Местная регуляция может осуществляться с помощью биологически активных веществ (гистамин), тканевых гормонов (простагландины).
Гуморальная регуляция осуществляется через жидкие среды организма (кровь (гумор), лимфу, межклеточную, цереброспинальную жидкости) с помощью различных биологически активных веществ, которые выделяются специализированными клетками, тканями или органами. Этот вид регуляции может осуществляться на уровне структур органа - местная саморегуляция, или обеспечивать генерализованные эффекты через систему гормональной регуляции. В кровь поступают химические вещества, образующиеся в специализированных тканях и обладающих специфическими функциями. Среди этих веществ различают: метаболиты, медиаторы, гормоны. Они могут действовать местно или дистантно. Например, продукты гидролиза АТФ, концентрация которых возрастает при повышении функциональной активности клеток, вызывают расширение кровеносных сосудов и улучшают трофику этих клеток. Особенно важную роль играют гормоны- продукты секреции специальных, эндокринных органов. К железам внутренней секреции относят: гипофиз, щитовидную и околощитовидные железы, островковый аппарат поджелудочной железы, кору и мозговое вещество надпочечников, половые железы, плаценту и эпифиз. Гормоны влияют на обмен веществ, стимулируют морфообразовательные процессы, дифференцировку, рост, метаморфоз клеток, включают определенную деятельность исполнительных органов, изменяют интенсивность деятельности исполнительных органов и тканей. Гуморальный путь регуляции действует относительно медленно, скорость ответной реакции зависит от скорости образования и секреции гормона, его проникновения в лимфу и кровь, скорости кровотока. Локальное действие гормона определяется наличием к нему специфического рецептора. Длительность действия гормона зависит от скорости его разрушения в организме. В различных клетках организма, в том числе и мозге, образуются нейропептиды, которые действуют на поведение организма, целый ряд различных функций и регулируют секрецию гормонов.
Нервная регуляция осуществляется посредством нервной системы, базируется на переработке информации нейронами и передаче ее по нервам. Имеет следующие особенности:
•большую скорость развития действия;
•точность связи;
•высокую специфичность - в реакции участвует строго определенное количество компонентов, необходимых в данный момент.
Нервная регуляция осуществляется быстро, с направленностью сигнала к определенному адресату. Передача информации (потенциалов действия нейронов) осуществляется со скоростью до 80-120 м/с без снижения амплитуды и потери энергии. Нервной регуляции подлежат соматические и вегетативные функции организма. Основной принцип нервной регуляции - рефлекс. Нервный механизм регуляции филогенетически возник позднее местного и гуморального и обеспечивает высокую точность, скорость и надежность ответной реакции. Он является наиболее совершенным механизмом регуляции.
Нервно-гуморальная корреляция. В процессе эволюции произошло объединение нервного и гуморального видов корреляций в нервно-гуморальную форму, когда экстренное вовлечение в процесс действия органов путем нервной корреляции дополняется и пролонгируется гуморальными факторами.
Нервная и гуморальная корреляции играют ведущую роль в объединении (интеграции) составных частей (компонентов) организма в единое целоеорганизм. При этом они как бы дополняют друг друга своими особенностями. Гуморальная связь имеет генерализованный характер. Она одновременно реализуется во всем организме. Нервная связь имеет направленный характер, она наиболее избирательна и реализуется в каждом конкретном случае преимущественно на уровне определенных компонентов организма.
Креаторные связи обеспечивают обмен между клетками макромолекулами, которые способны оказать регуляторное влияние на процессы метаболизма, дифференцировки, роста, развития, функционирования клеток, тканей. Через креаторные связи осуществляется влияние кейлонов - белков, подавляющих синтез нуклеиновых кислот и деление клеток.
Метаболиты по механизму обратной связи оказывают влияние на внутриклеточный обмен и функции клеток и на функционирование рядом расположенных структур. Например, при интенсивной мышечной работе молочная и пировиноградная кислоты, образующиеся в мышечной клетке в условиях дефицита кислорода, ведут к расширению микрососудов мышцы, к увеличению притока крови, питательных веществ и кислорода, что улучшает питание мышечных клеток. Одновременно они стимулируют метаболические пути их использования, снижают сократительную способность мышцы.
Нейроэндокринная система обеспечивает соответствие метаболических, физических функций и поведенческих реакций организма условиям внешней среды, поддерживает процессы дифференциации, роста, развития, регенерации клеток; в целом способствуют сохранению и развитию как индивидуума, так и биологического вида в целом. Двойная (нервная и эндокринная) регуляция обеспечивает через механизм дублирования надёжность регуляции, высокую скорость ответа через нервную систему и длительность ответа во времени через выделение гормонов. Филогенетически наиболее древние гормоны вырабатываются нервными клетками, химический сигнал и нервный импульс часто взаимопревращаемы. Гормоны, будучи нейромодуляторами, оказывают влияние на эффекты в ЦНС многих медиаторов (гастрин, холецистокинин, ВИП, ГИП, нейротензин, бомбезин, субстанция Р, опиомеланокортины - АКТГ, бета-, гамма-липотропины, альфа-, бета-, гамма-эндорфины, пролактин, соматотропин). Описаны гормон продуцирующие нейроны.
В основе нервной и гуморальной регуляции лежит принцип кольцевой связи, который в биологических системах был приоритетно показан советским физиологом П.К.Анохиным. Положительные и отрицательные обратные связи обеспечивают оптимальный уровень функционирования - усиление слабых ответов и ограничение сверхсильных.
Деление механизмов регуляции на нервные и гуморальные является условным. В организме эти механизмы неразделимы.
1) Информация о состоянии внешней и внутренней среды, как правило, воспринимается элементами нервной системы, и после обработки в нейронах в качестве исполнительных органов могут использоваться как нервный, так и гуморальный путь регуляции.
2) Деятельность желез внутренней секреции управляется нервной системой. В свою очередь, метаболизм, развитие и дифференцировка нейронов осуществляется под влиянием гормонов.
3) Потенциалы действия в местах контакта нейрона и рабочей клетки вызывают секрецию медиатора, который через гуморальное звено изменяет функцию клетки. Таким образом, в организме существует единая нейрогуморальная регуляция с приоритетным значением нервной системы. Организм на действие каждого раздражителя отвечает сложной биологической реакцией как единое целое. Это достигается взаимодействием всех систем, тканей и клеток организма. Взаимодействие обеспечивается местными, гуморальными и нервными механизмами регуляции
Нервная система человека делится на центральную (головной и спинной мозг) и периферическую. Центральная нервная система обеспечивает индивидуальное приспособление организма к среде обитания, адаптацию организма, поведение организма в соответствии с конституцией и его потребностями, обеспечивает интеграцию и объединение органов в единое целое на основе восприятия, оценки, сравнения, анализа информации, поступающей из внешней и внутренней среды организма. Периферическая нервная система обеспечивает трофику тканей и оказывает непосредственное влияние на структуру и функциональную активность органов.
№25??? ИСТОКИ СИСТЕМНОГО ПОДХОДА В ОТЕЧЕСТВЕННОЙ ФИЗИОЛОГИИ
Именно И. П. Павлов впервые ввел понятие системности в русской физиологии с целью исследования жизнедеятельности целого организма и в приложении к процессам ВНД. "Человек - писал И. П. Павлов в статье "Ответ физиолога психологам" - есть, конечно, система (грубее говоря, машина), как и всякая другая в природе, подчиняющаяся неизбежным для всей природы законам,.. но система, на горизонте нашего современного научного видения,. единственная по высочайшему саморегулированию... Система в высочайшей степени саморегулирующаяся, сама себя поддерживающая, восстанавливающая... Разнообразно саморегулирующиеся машины мы уже достаточно знаем между изделиями человеческих рук. С этой точки зрения метод изучения системы человека тот же,.. как и всякой другой системы, - разложение на части, изучение значения каждой части, изучение связи частей, изучение соотношения с окружающей средой и, в конце концов, понимание на основании всего этого ее общей работы и управление ею" [Павлов И. П., 1949а]. Наиболее отчетливо черты системности просматриваются в разработанном И. П. Павловым учении о динамическом стереотипе. "С развитием учения о "динамическом стереотипе'', - писал, П. К. Анохин (1940),-И. П. Павлов схватил одну из наиболее характерных черт "целостности'' в приложении ее к процессам высшей нервной деятельности". Действительно, выработанный динамический стереотип характеризуется рядом свойств, новых по сравнению с классическими условными рефлексами: в нем утрачивается значение внешнего (условного) стимула и в качестве пускового момента рефлекторной деятельности выступают "следы" от предшествующих раздражении, т. е. механизмы памяти. При этом также утрачивается действие закона физической силы применяемых раздражителей. Иными словами, в выработанном динамическом стереотипе наруша-ется ведущее звено рефлекса, связанное с действием внешнего стимула и его анализом в ЦНС. Значит, целый организм не всегда машинообразно работает по принципу рефлекса [Судаков К. В., 1984]. Иначе говоря, нарушался важнейший принцип классической теории условных рефлексов, согласно которому возникшее в ответ на действие условного стимула поведение сводилось только к соответствию между раздражителем и реакцией на него организма. Идея И. П. Павлова о системности процессов высшей нервной деятельности, "стремление свести аналитически разрозненный и рассеянный материал в некоторое единство, создать модель, которая помогла бы понять каждую мелочь на ее собственном месте, в большом, так сказать, адресе" [Анохин П. К., 1976] оказали существенное влияние на развитие новой теории, объясняющей на основе отличных от рефлекторной теории принципов организацию физиологических функций, - теории функциональных систем. Сформулированная П. К. Анохиным теория функциональных систем (1932-1974) "оказалась как раз весьма удобной для того, чтобы осуществить главную цель "системного подхода": понять, как единичные процессы, детали, результаты поведенческого эксперимента соединяются в некоторую гармоническую систему самоорганизующегося характера" [Анохин П. К.. 1934].
№26 Функциональные системы организма — динамические, саморегулирующиеся центрально-периферические организации, обеспечивающие своей деятельностью полезные для метаболизма организма и его приспособления к окружающей среде результаты.
Для достижения полезных для организма результатов в функциональных системах избирательно объединяются элементы разных уровней. В организме это ткани различных органов, механизмы нервной и гуморальной регуляции. Регуляторные взаимоотношения, свойственные функциональным системам, обеспечивают необходимую адаптивную устойчивость результатов их деятельности и взаимосодействие отдельных элементов для достижения полезных результатов для всего организма в целом. Их роль могут выполнять результаты метаболических реакций в тканях, а также различные показатели внутренней среды организма, обеспечивающие разные стороны метаболических процессов; результаты поведенческой деятельности, удовлетворяющие ведущие биологические потребности живых существ в воде, пище, размножении, избегании опасности и т.д.; достижение животными результатов стадной групповой деятельности (популяционные функциональные системы); удовлетворение биологических потребностей, получение образования, удовлетворение духовных потребностей, защиту общества и т.д., то есть на достижение человеком социально значимых результатов (специальные функциональные системы социального уровня).
Функциональные системы поведенческого и особенно психического уровня, как правило, складываются по мере формирования у субъектов специальных потребностей и формируются в значительной степени в процессе обучения. Избирательное становление функциональных систем и их отдельных частей в процессе онтогенеза получило название системогенеза.
Общим принципом динамической организации функциональных систем является принцип саморегуляции. Отклонение результата деятельности функциональных систем от уровня, обеспечивающего оптимальную жизнедеятельность организма, стимулирует активность в рамках функциональных систем цепи процессов, направленных на возвращение этого результата к оптимальному уровню.
Любая функциональная система имеет принципиально однотипную организацию и включает общие (универсальные для разных функциональных систем), периферические и центральные узловые механизмы. К ним относятся: полезный приспособительный результат как ведущее звено функциональных систем; рецепторы результата; обратная афферентация, идущая от рецепторов результата в центральные образования функциональных систем; центральная архитектоника, представляющая собой избирательное объединение нервных элементов различных уровней; исполнительные (соматические, вегетативные, эндокринные, а также поведенческие) компоненты.
УЗЛОВЫЕ МЕХАНИЗМЫ ФУНКЦИОНАЛЬНЫХ СИСТЕМ Теория функциональных систем, рассматривающая целенаправленный поведенческий акт как системную динамическую организацию, развертывающуюся в определенной последовательности, имеет специфические узловые механизмы, объединяющие различные уровни ЦНС и участвующие в построении и реализации сложного приспособительного поведения. При этом "все функциональные системы, независимо от уровня своей органи-зации и от количества составляющих их компонентов, имеют принципиально одну и ту же функциональную архитектуру, в которой результат является доминирующим фактором, стабилизирующим организацию систем" [Анохин П. К., 1971]. К узловым механизмам, лежащим в основе структуры поведенческого акта любой степени сложности, относятся: 1) афферентный синтез; 2) стадия принятия решения; 3) формирование акцептора результата действия; 4) формирование самого действия (эфферентный синтез); 5) многокомпонентное действие; 6) достижение результата; 7) обрат-ная афферентация о параметрах достигнутого результата и сопоставление его с ранее сформировавшейся моделью результата в акцепторе результата действия. Нейрофизпологической основой афферентного синтеза является конвергенция мно-жественных возбуждений различной модальности на нейронах коры головного мозга. Об-работка этих возбуждений нейронами осуществляется при помощи ряда механизмов, фи-зиологический смысл которых состоит в том, что они обеспечивают успешность протека-ния стадии афферентного синтеза. К таким механизмам относятся: корково-подкорковая реверберация возбуждений [Шумилина А. И., 1968], увеличение дискриминационной спо-собности нейрона к частоте импульсации [Хаютин С. Н., 1971], увеличение конвергентной емкости отдельных нейронов под влиянием доминирующей мотивации [Макаров В. А.,. 1970]. В основе стадии принятия решения лежит процесс освобождения организма "от чрезвычайно большого количества степеней свободы, способствующий формированию интеграла эфферентных возбуждений, необходимых и имеющих приспособительный смысл для организма именно в данный момент и именно в. данной ситуации" [Анохин П. К., 1968]. Акцептор результата действия "предвосхищает" афферентные свойства того ре-зультата, который должен быть получен животным в соответствии с принятым решением, и, следовательно, опережает ход событий в отношении между организмом и внешним ми-ром. Однако он не только прогнозирует "признаки необходимого в данный момент ре-зультата, но и сличает их с параметрами реального результата, информация о которых приходит к акцептору результата действия благодаря обратной афферентации" [Анохин П. К., 1971]. Важным фактором формирования акцептора результата действия, как и предшест-вующих, является доминирующая мотивация, которая как бы "вытягивает" в аппарате ак-цептора результата действия весь накопленный опыт, закодированный в памяти, создавая определенный поведенческий акт в форме опережающего возбуждения. В ходе реализации целенаправленного поведения через звено обратной афферентации осуществляется постоянная оценка реально полученного результата с тем, который был "запрограммирован" в акцепторе результата действия. Результат этой оценки и опре-деляет дальнейшее поведение. Изучение механизмов "созревания" функциональных систем в ходе онтогенетиче-ского развития функций привело П. К. Анохина к формулировке нового направления - системогенеза. Сущность системогенеза заключается в том, что к моменту рождения че-ловека или животного в первую очередь гетерохронно и избирательно созревают те функ-циональные системы, которые обеспечивают выживание новорожденного сразу после ро-ждения. В процессе индивидуальной жизни созревание функциональных систем тоже происходит избирательно, в разные сроки. Использование теории функциональных систем в условиях патологии позволило П. К. Анохину разработать теоретические основы компенсации нарушенных функций. Теория функциональных систем позволила П. К. Анохину создать новое направле-ние в физиологии - функциональную нейрохимию, основная задача которой состоит в выявлении и изучении взаимосвязи между характером возбуждения и нейрохимическими механизмами его обработки на нейроне в процессе выполнения животным адаптивных функций. Результаты исследования специфических механизмов на синапсах корковых клеток дали возможность сформулировать конвергентную теорию замыкания временных связей на одиночных нейронах мозга. Одним из наиболее важных обобщений П. К. Анохина, вытекающих из принципов физиологической архитектоники функциональной системы, является представление об интегративной деятельности нейрона, включающее структурные, нейрофизиологические и нейрохимические доказательства внутринейронной обработки и интегрирования синап-тических возбуждений, приходящих к одному и тому же нейрону по различным аффе-рентным путям. Теория функциональных систем, явившаяся основой системного подхода в физио-логии, за 50-летний период ее развития нашла многочисленные практические приложения во многих отраслях науки и техники. "Я могу привести целые области физиологии, кото-рые получили от общей теории функциональных систем новое направление и в объясне-нии и в разработке, - писал П. К. Анохин в статье "Принципиальные вопросы общей теории функциональных систем" (1971). - Сюда относится компенсация нарушенных функций, гипертоническая болезнь, эмоциональные стрессы и т. д. Если к этому приба-вить использование теории функциональных систем педагогами, медиками, музыкантами и многими другими специалистами, то можно с достаточной степенью уверенности ут-верждать, что в общей теории функциональных систем были нащупаны в самом деле уни-версальные черты функционирования, относящихся к различным классам явлений".
Дополнительно: Функциональные системы…
Функциональная система - это временная, динамическая, саморегулирующаяся организация, все составные компоненты которой, взаимодействуя, обеспечивают достижение полезных приспособительных результатов.
В функциональной системе есть периферические и центральные составляющие:
Периферические составляющие:
А) Исполнительные соматические, вегетативные и эндокринные компоненты, в том числе и поведенческие/, включающие механизмы формирование результата.
Б) Полезный приспособительный результат.
В) Рецепторы, воспринимающие параметры результата действия.
Г) Обратная афферентация.
Центральная составляющая:
Центральная архитектоника функциональной системы имеет три важнейшие составные части:
1. Афферентный синтез (в него входит - мотивация, память, пусковой и обстановочный раздражители).
2. На основании афферентного синтеза мозгом вырабатывается решение и формируется аппарат действия и программа действия /эфферентный синтез/.
3. Параллельно формируется аппарат прогноза. Аппарат действия формирует результат действия.
Полезный приспособительный результат является системообразующим фактором, т.е. он образует из этих отдельных элементов систему. Им может быть:
1. Показатель внутренней среды.
2. Результат поведенческой деятельности, удовлетворяющий основные биологические потребности организма.
3. Результат стадной деятельности животных, удовлетворяющий потребности сообществ.
4. Результат социальной деятельности человека.
Он всегда направлен на удовлетворение той потребности, которая породила эту реакцию. С помощью обратной афферентации мозг сравнивает свой прогноз с тем, что реально получилось.
№27 Более 100 лет назад великий физиолог К. Бернар пришел к заключению, что "постоянство внутренней среды есть условие независимого существования". Иначе говоря, для того чтобы организм функционировал эффективно, составляющие его клетки должны находиться в строго регулируемой среде. Позже этот принцип нашел многочисленные подтверждения и стало ясно, что внутренняя среда организма животных регулируется множеством специальных механизмов. Благодаря этому состав среды поддерживается постоянным, изменяясь лишь в узких пределах. Для описания этого состояния в 1929 г. Уолтер Кэннон ввел термин гомеостаз (от греч. homoios — подобный, stasis — стояние). Под гомеостазом сейчас понимаются не только сами согласованные физиологические процессы, поддерживающие большинство устойчивых состояний организма, но и регулирующие механизмы, которые обеспечивают это состояние. Многие из отдельных механизмов, особенно касающихся регуляции внутри- и внеклеточных взаимоотношений, оказывают в ряде случаев уравновешивающие друг друга взаимопротивоположные воздействия. В конечном счете это приводит к установлению в организме подвижного физиологического фона, а также позволяет живой системе несмотря на сдвиги, возникающие в процессе жизнедеятельности и изменения в окружающей среде, поддерживать относительное динамическое постоянство. Границы гомеостаза могут быть жесткими и пластичными. Их показатели зависят от видовых, индивидуальных, половых и других условий. Жесткими константами являются параметры внутренней среды, которые определяют оптимальную активность ферментов, т.е. возможность осуществления обменных процессов.
Живой организм представляет собой открытую систему, непрерывно обменивающуюся материей и энергией с окружающей средой. В этом обмене и поддержании постоянства внутренней жизни участвует огромное число органов, систем, процессов, механизмов. К ним относятся такие, как кожа, селезенка, печень, барьерная система, иммунная система и т.д.
Например, кожа обеспечивает защитную, обменную, выделительную, сенсорную и другие функции. Она является водным и жировым депо. В селезенке осуществляется кроветворение, депонирование электролитов, липидов, в ней образуются гемолизины. В печени обезвреживаются токсины, лекарственные вещества, разрушается ряд гормонов. Печень участвует в обмене белков, жиров, углеводов и воды, а также в выработке тепла в организме. В ней образуются желчь, компоненты свертывания крови и другие биологические активные вещества. Она является депо минералов и антианемического фактора.
Наряду с кожей, почками, органами дыхания и пищеварительным трактом печень входит в состав внешних барьеров, обеспечивающих защиту организма от неблагоприятных факторов окружающей среды, и внутренних барьеров,сохраняющих постоянство внутренней среды. К внутренним барьерам принято относить гистогематические, гематоэнцефалический, гематокохлеарный. Их структурной основой является эндотелий капилляров.
Способность к саморегуляции – это основное свойство живых систем Оно необходимо для создания оптимальных условий взаимодействия всех элементов, составляющих организм, обеспечения его целостности. Выделяют четыре основных принципа саморегуляции:
1. Принцип неравновесности или градиента. Биологическая сущность жизни заключается в способности живых организмов поддерживать динамическое неравновесное состояние относительно окружающей среды. Например, температура тела теплокровных выше или ниже окружающей среды. В клетке больше катионов калия, а вне ее – натрия и т.д. Поддержание необходимого уровня асимметрии относительно среды обеспечивают процессы регуляции.
2. Принцип замкнутости контура регулирования. Каждая живая система не просто отвечает на раздражение, но и оценивает соответствие ответной реакции действующему раздражению. Т.е. чем сильнее раздражение, тем больше ответная реакция и наоборот. Эта саморегуляция осуществляется за счет обратных положительных и отрицательных обратных связей в нервной и гуморальной системах регуляции. Т.е. контур регуляции замкнут в кольцо. Пример такой связи – нейрон обратной афферентации в двигательных рефлекторных дугах.
3. Принцип прогнозирования. Биологические системы способны предвидеть результаты ответных реакций на основе прошлого опыта. Пример – избегание болевых раздражений после предыдущих.
4. Принцип целостности. Для нормального функционирования живой системы требуется ее структурная целостность.
Учение о гомеостазе было разработано К. Бернаром. В 1878 г. он сформулировал гипотезу об относительном постоянстве внутренней среды живых организмов. В 1929 г. В. Кэннон показал, что способность организма к поддержанию гомеостаза является следствием систем регуляции в организме. Он же предложил термин “гомеостаз”. Постоянство внутренней среды организма (крови, лимфы, тканевой жидкости, цитоплазмы) и устойчивость физиологических функций является результатом действия гомеостатических механизмов. При нарушении гомеостаза, напримерклеточного, происходит перерождение или гибель клеток. Клеточный, тканевой,органный идругие формы гомеостаза регулируются и координируются гуморальной, нервной регуляцией, а также уровнем метаболизма.
Параметры гомеостаза являются динамическими и в определенных пределах изменяются под влиянием факторов внешней среды (например, рН крови, содержание дыхательных газов и глюкозы в ней и т.д.). Это связано с тем, что живые системы не просто уравновешивают внешние воздействия, а активно противодействуют им. Способность поддерживать постоянство внутренней среды при изменениях внешней – главное свойство, отличающее живые организмы от неживой природы. Поэтому они весьма независимы от внешней среды. Чем выше организация живого существа, тем более оно независимо внешней среды.
Комплекс процессов, которые обеспечивают гомеостаз, называется гомеокинезом. Он осуществляется всеми тканями, органами и системами организма.
Гомеостазис – относительное постоянство внутренней среды организма
Гомеокинез – изменение гомеостатических констант с возвратом к норме
Гомеорезис – качественное изменение гомеостатической константы
№28??? Рефлекс (от лат. reflexus — отражённый) — стереотипная реакция живого организма на раздражитель, проходящая с участием нервной системы. Принцип рефлекса – это универсальная и своеобразная форма взаимодействия организма со средой, происходящая при участии нервной системы. Понятие о рефлексе возникло в XVI веке в учении Р. Декарта (1596-1650) о механической картине мира. Под рефлексом Р. Декарт понимал движение «животных духов» от мозга к мышцам по типу отражения светового луча. Согласно его схеме внешние предметы действуют на периферические окончания расположенных внутри нервных «трубок» нервных «нитей», которые, натягиваясь, открывают клапаны отверстий, ведущих из мозга в нервы. По каналам этих нервов «животные духи» перемещаются в соответствующие мышцы, которые в результате раздуваются, и, таким образом, происходит движение.
Биологическая концепция рефлекса была сформирована чешским анатомом и физиологом Йиржи Прохазкой (1749-1820). Свои представления о рефлексе Й. Прохазка выразил следующим образом: внешние впечатления, возникающие в чувствительных нервах, быстро распространяются по всей их длине до самого начала. Там они отражаются по определенному закону, переходят на соответствующие им двигательные нервы и по ним очень быстро направляются к мышцам, которые затем производят точные и строго ограниченные движения. Впервые термин «рефлекс» был введен в научный язык Й. Прохазкой.
В дальнейшем, уже в XIX в., была создана рефлекторная теория нервной деятельности. Дуализм Р. Декарта в понимании рефлекторной природы деятельности нервной системы был преодолен И. М. Сеченовым, который в «Рефлексах головного мозга» (1863) впервые четко обосновал, что явления сознания подчиняются физиологическим законам и что в основе психических явлений лежат рефлекторные процессы.
В дальнейшем И. П. Павлов на примерах образования условных рефлексов показал, что поведение животных обусловлено рефлекторными механизмами. Механизмы поведения по И. П. Павлову основываются на трех принципах рефлекторной деятельности: принцип детерминизма (причинности) — всякое действие организма причинно обусловлено; принцип анализа и синтеза — любое воздействие вначале анализируется качественно, количественно, по биологической значимости, а затем в зависимости от результата анализа синтезируется соответствующее ответное поведение; принцип структурности — все физиологические процессы протекают в определенных нервных структурах.
По ряду признаков рефлексы могут быть разделены на группы:
По типу образования: условные и безусловные рефлексы
По видам рецепторов: экстероцептивные (кожные, зрительные, слуховые, обонятельные), интероцептивные (с рецепторов внутренних органов) и проприоцептивные (с рецепторов мышц, сухожилий, суставов)
По эффекторам: соматические, или двигательные (рефлексы скелетных мышц), например флексорные, экстензорные, локомоторные, статокинетические и др.; вегетативные внутренних органов — пищеварительные, сердечно-сосудистые, выделительные, секреторные и др.
По биологической значимости: оборонительные, или защитные, пищеварительные, половые, ориентировочные.
По степени сложности нейронной организации рефлекторных дуг различают моносинаптические, дуги которых состоят из афферентного и эфферентного нейронов (например, коленный), и полисинаптические, дуги которых содержат также 1 или несколько промежуточных нейронов и имеют 2 или несколько синаптических переключений (например, флексорный).
По характеру влияний на деятельность эффектора: возбудительные — вызывающими и усиливающими (облегчающими) его деятельность, тормозные — ослабляющими и подавляющими её (например, рефлекторное учащение сердечного ритма симпатическим нервом и урежение его или остановка сердца — блуждающим).
По анатомическому расположению центральной части рефлекторных дуг различают спинальные рефлексы и рефлексы головного мозга.
Рефлекс - ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии ЦНС. Вся нервная деятельность складывается из рефлексов различной степени сложности, т. е. является отраженной, вызванной внешним поводом, внешним толчком. Путь, по которому проходит нервный импульс от рецептора до эффектора (действующий орган), называется рефлекторной дугой.
В рефлекторной дуге различают пять звеньев: 1) рецептор; 2) чувствительное волокно, про-водящее возбуждение к центрам; 3) нервный центр, где происходит переключение возбуждения с чувствительных клеток на двигательные; 4) двигательное волокно, передающее нервные импульсы на периферию; 5) действующий орган - мышца или железа. Для осуществления любого рефлекса необходима целостность всех звеньев рефлекторной дуги. Нарушение хотя бы одного из них ведет к исчезновению рефлекса.
Физиология центральной нервной системы (ЦНС) является наиболее сложной, но в то же время и наиболее ответственной главой физиологии, так как у высших млекопитающих и человека нервная система осуществляет функцию связи частей организма между собой, их соотношение и интеграцию, с одной стороны, и функцию связи агентов внешней среды с определенными проявлениями деятельности организма - с другой. Успехи современной науки в расшифровке всей сложности нервной системы основываются на признании единого механизма ее функционирования - рефлекса. Рефлекторная функция представляет собой основной специфичный для ЦНС вид деятельности, проявляющийся в осуществлении сложных своеобразных и высокодифференцированных реакций, получивших название рефлексов. илирефлекторных реакций.
Основателем учения о рефлексах является французский философ Декарт, который в первой половине XVII столетия дал описание рефлекторного акта. Декарт полагал, что животные являются сложными биологическими машинами, и все их реакции на внешнюю среду, а также многие реакции человека осуществляются по принципу автоматических, механических, отраженных ответов на раздражение. По мнению Декарта, при воздействии какого-либо раздражителя на орган чувств приводятся в движение нервные волокна; они натягиваются и открывают расположенные на внутренней поверхности мозга отверстия, через которые выходят находящиеся в мозговых желудочках "животные духи" (esprits animaux); эти последние проходят по нервам и втекают в мышцы, вызывая их сокращения .
Эти воззрения Декарта на природу ответной реакции организма на внешние раздражения в свете современных знаний представляются наивными, механистичными и фантастическими, однако, нельзя не признать, что именно ему принадлежит первое и в целом верное описание пути, по которому проходит нервный импульс при рефлекторном акте, и первое описание важнейших элементов рефлекторной дуги.
При всей фантастичности таких представлений идея отражения нервной системой характера раздражения была воспринята физиологами и получила свое дальнейшее развитие в трудах Г. Прохазки, Ф. Мажанди, И.М. Сеченова, И.П. Павлова, П.К. Анохина и др. ученых, которые заложили прочные основы учения о рефлексах.
Самый термин"рефлекс" (лат. reflex - отражение) для обозначения реакции организма на внешнее раздражение был введен в 1817 . немецким ученым Г. Прохазка, который заимствовал этот термин из физики вкладывая в основу понятия рефлекса представление от отражении (рефлекторный акт есть отражение действия раздражителя).
Закономерным следствием из этого представления стала т.н. рефлекторная теория которая заключается в утверждении, ч о деятельность организма есть закономерная рефлекторная реакция на стимул. Революционным прорывом для рефлекторной теории послужила знаменитая работа И.М. Сеченова "Рефлексы головного мозга" (1863 . В этой работе Сеченов впервые провозгласил тезис о том\. что все виды сознательной и бессознательной жизни человека представляют собой рефлекторные (отраженные) реакции. Структурной основой рефлекса является рефлекторная дуга, состоящей из рецепторной, афферентной проводниковой, центральной, эфферентной части и рабочего органа (рис 1). Всякий рефлекторный акт начинается при воздействии внешнего или внутреннего раздражителя на рецепторный аппарат и заканчивается каким-либо изменением деятельности организма.
Структурной основой рефлекса является рефлекторная дуга — последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление реакции, или ответа, на раздражение. В ее состав входят:
1. Рецепторы;
2. Афферентные нервные волокна, несущие возбуждение к ЦНС;
3. Нейроны и синапсы, передающие возбуждение к эфферентным нейронам;
4. Эфферентные нервные клетки и волокна, проводящие импульсы от ЦНС на периферию;
5. Исполнительный орган, деятельность которого изменяется в результате осуществления рефлекса.
В зависимости от сложности структуры рефлекторной дуги различают моно- и полисинаптические рефлексы. В простейшем случае импульсы, поступающие в центральные нервные структуры по афферентным путям, переключаются непосредственно на эфферентную нервную клетку, т. е. в системе рефлекторной дуги имеется одно синаптическое соединение. Такая рефлекторная дуга называется моносинаптической (например, рефлекторная дуга сухожильного рефлекса в ответ на растяжение). Наличие в структуре рефлекторной дуги двух и более синаптических переключений (т. е. три и более нейронов), позволяет характеризовать ее как полисинаптическую.
Ученик Павлова П.К. Анохин, создав концепцию о функциональной системе, как основном принципе саморегуляции функций, дополнил схему рефлекторной дуги представлением об обратной афферентации из рабочего органа в центр, которая несет информацию о состоянии рабочего органа, о ходе выполнения команды и о результатах деятельности (рис 1).Представление о рефлекторной реакции как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном — петлей обратной связи, призванной установить связь между реализованным результатом рефлекторной реакции и нервным центром, выдающим исполнительные команды.
Обратная связь трансформирует открытую рефлекторную дугу в закрытую. на может быть реализована разными способами: от исполнительной структуры к нервному центру (промежуточному или эфферентному двигательному нейрону), например, через возвратную аксонную коллатераль пирамидного нейрона коры больших полушарий или двигательной моторной клетки переднего рога спинного мозга. Обратная связь может обеспечиваться и нервными волокнами, поступающими к рецепторным структурам и управляющими чувствительностью рецепторных афферентных структур анализатора.
Такая структура рефлекторной дуги превращает ее в самонастраивающийся нервный контур регуляции физиологической функции, совершенствуя рефлекторную реакцию и, в целом, оптимизируя поведение организма. Обратная связь - важнейший принцип функционирования информационно-управляющих систем - трансформирует открытую рефлекторную дугу в закрытую. В результате рефлекторная дуга превратилась в рефлекторное кольцо, которое является материальным субстратом для саморегуляции, в ходе которой в ходе ответной реакции постоянно происходит корректировка команд рабочим органам и наилучшее выполнение окончательного результата.
Следующим этапом развития рефлекторной теории является открытие И.П. Павловым (1912) нового класса рефлексов - условных, которые не являются наследственными, а приобретаются индивидуумом в течение его жизни на основе личного опыта. По сути условный рефлекс есть ассоциация двух или более безусловных рефлексов, которая возникает при достаточно частом повторении стереотипных сочетаний двух сигналов.
В организме связи рефлекторных дуг обычно настолько сложны, что их очень трудно выразить в виде каких-то графических схем. Рассматривая строение рефлекторных дуг, надо помнить, что, как правило, рефлексы возникают при раздражении не одного, а многих рецепторов, расположенных в той или иной части тела. Та область тела, раздражение которой вызывает определенный рефлекс, называется рефлексогенной зоной, или рецептивным полем рефлекса. Рецептивные поля разных рефлексов могут перекрываться.
При осуществлении любого рефлекса нервные импульсы не ограничиваются рефлекторной дугой данного рефлекса. Они широко распространяются в ЦНС по многочисленным проводящим путям. Так, у животных при болевом раздражении возбуждение идет не только к мотонейронам, но и в головной мозг, к гипоталамусу. Благодаря этому в защитной реакции на болевое раздражение участвуют нейроны мозгового ствола и коры, возникает ощущение боли, сопровождающееся рядом вегетативных реакций - изменением частоты пульса, частоты и глубины дыхания, сосудистого тонуса и пр. Степень вовлечения в реакцию на раздражитель нервных клеток и различных отделов ЦНС зависит от силы раздражителя, длительности его действия и состояния нервной системы.
Дополнительно: Рефлекторная регуляция…
В основе нервной регуляции функций лежат рефлексы.
Рефлекс - это стериотипная (однообразная, повторяющаяся одинаково), ответная реакция организма на действие раздражителей при обязательном участии ЦНС.
Принципы рефлекторной теории по Павлову
1 Принцип детерминизма.Каждый рефлекс имеет причину.
2 Принцип структурности. У каждого рефлекса есть свой морфологический субстрат, своя рефлекторная дуга.
3.Принцип анализа и синтеза. Анализ - расщепление на части, синтез - объединение частей в целое с получением нового качества. В основе реализации рефлекса лежит морфологическая субстанция - рефлекторная дуга.
Рефлекторная дуга состоит из 3-х основных частей:
1. афферентная часть рефлекторной дуги,
2. 2. центранльная часть рефлекторной дуги,
3. 3. эфферентная часть рефлекторной дуги
Афферентная часть - наиболее простой организацией афферентной части рефлекторной дуги является чувствительные нейрон (расположенный вне центральной нервной системы), при этом аксон чувствительного нейрона соединяет его с центральной нервной системой, а дендриты чувствительного нейрона (представляют собой чувствительные нервы) несут информацию от периферии к телу нейрона. Главное в деятельности афферентного нейрона в рефлекторной дуге это рецепция. Именно за счет рецепции афферентные нейроны осуществляют мониторинг внешней среды, внутренней среды, и несут информацию об этом в ЦНС. Некоторые рецепторные клекти выделяются в отдельные образования-органы чувств. Главная задача афферентной части рефлекторной дуги - воспринять информацию, т.е. воспринять действие раздражителя, и передать эту информацию в ЦНС.
Эфферентная часть представлена соматической и вегетативной нервной системой. Сами нейроны, с которых начинается соматическая и вегетативная нервная система, лежат в пределах ЦНС. Начиная с подкорковых образований и кончая крестцовым отделом позвоночника. Все нейроны коры НЕ ИМЕЮТ связи с периферической системой.
Для соматичекой нервной системы нейрон, который лежит в пределах ЦНС, отдает свой аксон, который достигает иннервируемой нервной системы (периферического органа).
Вегетативная нервная система - у нее 1-й нейрон лежит в пределах ЦНС и его аксон никогда не достигает периферического органа. 2-е нейроны есть всегда.Они образуют вегетативные ганглии и только аксоны 2-х
нейронов достигают периферических органов. Свойства эфферентной части (соматической, вегетативной нервной системы) см. "Нервы. Проведение нервных возбуждений по нервам. Синапс. Передача возбуждения в синапсе".
У соматической и вегетативной нервных систем, как эфферентов, общая афферентная система.
Центральная часть (см. в книге)- вставочные нейроны в пределах ЦНС объединяются в нервные центры.
Существует анатомическое и физиологическое понятие нервного центра.
Анатомическое - пространственное объединение отдельных нейронов в единое целое есть нервный центр.
Физиологическое - ансамбль единства неронов, объединенных ответственностью за выпроление одной и той же функции-нервный центр. С анатомической точки зрения нерв это всегда точечка, это всегда точечное пространство, с физиологической - различные части нервных центров могут располагаться на разных этажах ЦНС.
Нейроны в нервных центрах объединяются в нервные цепи, цепи создают нервные сети. Существует два типа нервных сетей:
1. локальные нервные сети,
2. иерархарические нервные сети.
Локальные нервные сети - большая часть неройнов обладают коротеньким аксоном и сеть образуется из нейронов одного уровня. Для локальых сетей характерна реверберация - нередко образуются замкнутые цепочки нейронов, по которым циркулирует возбуждение с постепенным затуханием.
Иерархарические сети - это нейроны, объединенные вместе, большая часть из них имеет длинные аксоны, которые позволяют объединить нейроны, находящиеся на различных этажах ЦНС в цепи нейронов. С помощью этих сетей выстраиваются соподчиненные отношение в этих разветвленных цепочках нейронов. Иерархические нервные сети организуют свою деятельность по двум принципам: дивергенции, конвергенции. Дивергенция - это когда вход информации один в нервный центр, а выход многоканален. Конвергенция - когда входов информации много, а выход один.
Свойства нервных центров:
1.нервные центры обладают выраженной способностю к суммации возбуждений. Суммация может быть: временной, пространственной/см. "Синапс"/,
2. иррадиация возникшего возбуждения-распространение возбуждения на рядом лежащие нейроны.
3. концентрация возбуждения-стягивание возбуждения на один или несколько нейронов.
4. индукция - наведение противоположного процесса. Индукция бывает: положительная (когда наводится процесс возбуждения), отрицательная (когда наводится процесс торможения). Индукция делится на: одновременую, последовательную. Одновременная - в ней задействованы как минимум два нервных центра. В первом - первично возникает процесс торможения или возбуждения, вторично наводит на соседний центр процесс противоположный. Последовательная - всегда развивается в одном и том же центре. Это такое явление, когда один процесс в центре наводит прямо противоположный процесс (в этом же центре).
5. трансформация - способность нервных центров преобразовывать частоту и силу пришедшего возбуждения. Причем нервные центры могут работать в понижающем и повышающем режиме.
6. окклюзия (закупорка) - избыточность пришедшей информации может привести к закупорке выходных ворот из нервного центра.
7. мультипликация - нервные центры способны умножить эффект.
8. спонтанная электрическая активность.
9. последействие.
10.реверберация.
11. задержка во времени - происходит при прохождении возбуждения через нервный центр. Это называется центральная задержка рефлекса, на нее приходится 1/3 часть всего времени латентного периода.
12. принцип единого конечного пути - афференты могут быть разные, внутренняя информация в мозге может приходить с разных участков, но ответ будет всегда один и тот же.
13. тонус нервных центров - некоторый постоянный уровень возбуждения. Большая часть нервов имееют выраженный тонус в состоянии покоя, т.е. они возбуждены частично в состояни покоя.
14. пластичность нервных центров - их способность перестраиваться при изменении условий существования,
15. Высокая утомляемость НЦ,
16. Высокая чувствительность к нейротропным ядам.
17. Доминанта. Способность за счет сильного возбуждения преоблодать над другими нервными центрами.
Свои функции центральная часть рефлекторной дуги осуществляет за счет постоянного взаимодействия процессов торможения и возбуждения.
№29 см №22
№30 Особенности распространения возбуждения в ЦНС
Всем нам хорошо известно, что электрический сигнал передается от нейрона к нейрону с помощью синапса. Однако, это весьма упрощенный механизм передачи и, как показывают исследования нейрофизиологов, передача возбуждения в ЦНС обладает рядом специфических свойств, без которых невозможна нормальная нервная деятельность.
Свойства нервной системы можно рассматривать на уроне нервных центров. Нервный центр - совокупность нервных клеток, более или менее строго локализованная в нервной системе и непременно участвующая в осуществлении рефлекса или другого вида нервной деятельности. Основными свойствами передачи возбуждения являются:
· одностороннее проведение возбуждения;
· задержка проведения возбуждения;
· суммация возбуждений;
· трансформация ритма возбуждений;
· рефлекторное последействие;
· быстрая утомляемость.
· облегчение проведения
· иррадиация
· торможение возбуждения
Одностороннее проведение возбуждения в центральной нервной системе обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении - от нервного окончания, выделяющего медиатор, к постсинаптической мембране.
Задержка проведения возбуждения в нервных центрах связана с наличием большого количества синапсов. На выделение медиатора, его диффузию через синаптическую щель, возбуждение постсинаптической мембраны требуется больше времени, чем на распространение возбуждения по нервному волокну.
Суммация возбуждений в нервных центрах возникает или при нанесении слабых, но повторяющихся (ритмичных) раздражений, или при одновременном действии нескольких подпороговых раздражений. Механизм этого явления связан с накоплением медиатора на постсинаптической мембране и повышением возбудимости клеток нервного центра. Примером суммации возбуждения может служить рефлекс чихания. Этот рефлекс возникает при длительном раздражении рецепторов слизистой оболочки носа.
Трансформация ритма. Нервные центры способны изменять ритм поступающих к ним импульсов. Они могут на одиночные раздражители отвечать серией импульсов или на раздражители небольшой частоты - возникновением более частых ПД. В результате ЦНС посылает к рабочему органу количество импульсов, относительно независимое от частоты раздражений. Это связано с тем, что нейрон является изолированной единицей нервной системы, к нему в каждый момент приходит множество раздражений. Под их влиянием происходит изменение мембранного потенциала клетки. Если создается небольшая, но продолжительная деполяризация (длительный ВПСП), то при этом один стимул вызывает серию импульсов. Частота возбуждений, поступающих из нервных центров на периферию к рабочему органу, колеблется от 50 до 200 в секунду. Этой особенностью центральной нервной системы объясняется то, что все сокращения скелетных мышц в организме являются тетаническими.
Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный, период. Это явление получило название рефлекторного последействия. Оно проявляется в том, что после прекращения раздражения афферентных нервов по эфферентным путям от ЦНС продолжают следовать импульсы к рабочему органу, вследствие чего рефлекторная реакция некоторое время сохраняется и после выключения раздражения. Последействие зависит от силы раздражения.
Нервные центры легко утомляемы в отличие от нервных волокон. При продолжительном раздражении афферентных нервных волокон утомление нервного центра проявляется постепенным снижением, а затем и полным прекращением рефлекторного ответа.
Облегчение проведения, или проторение пути. Установлено, что после возбуждения, возникшего в ответ на ритмическое раздражение, следующий стимул вызывает больший эффект или для поддержания прежнего уровня ответной реакции требуется меньшая сила последующего раздражения. Это явление получило название облегчения. Его можно объяснить тем, что при первых стимулах ритмического раздражителя происходит перемещение пузырьков медиатора ближе к пресинаптической мембране и при последующем раздражении медиатор быстрее выделяется в синаптическую щель. Это, в свою очередь, приводит к тому, что вследствие суммации ВПСП быстрее достигается критический уровень деполяризации и возникает распространяющийся потенциал действия.
Иррадиация. При возбуждении нейронов н.ц. биоэлектрические импульсы распространяются по коллатералям, вызывая активацию соседних центров. Это явление получило название «иррадиация». В результате при раздражении одного рецепторного поля нередко возникает генерализованная реакция, в которую вовлекаются эффекторы, контролируемые различными нервными центрами
Одним из самых важных процессов, сопровождающих возбуждение в ЦНС, является процесс торможения. Торможение в центральной нервной системе -- активный процесс, проявляющийся внешне в подавлении или в ослаблении процесса возбуждения и характеризующийся определенной интенсивностью и длительностью. Торможение в норме неразрывно связано с возбуждением, является его производным, сопутствует возбудительному процессу, ограничивая и препятствуя чрезмерному распространению последнего. При этом торможение часто ограничивает возбуждение и вместе с ним формирует сложную мозаику активированных и заторможенных зон в центральных нервных структурах. Формирующий эффект тормозного процесса развивается в пространстве и во времени. Торможение -- врожденный процесс, постоянно совершенствующийся в течение индивидуальной жизни организма. При значительной силе фактора, вызвавшего торможение, оно может распространяться на значительное пространство, вовлекая в тормозной процесс большие популяции нервных клеток. История развития учения о тормозных процессах в центральной нервной системе начинается с открытия И. М. Сеченовым эффекта центрального торможения (химическое раздражение зрительных бугров тормозит простые спинномозговые безусловные реакции). Вначале предположение о существовании специфических тормозных нейронов, обладающих способностью оказывать тормозные влияния на другие нейроны, с которыми имеются синаптические контакты, диктовалось логической необходимостью для объяснения сложных форм координационной деятельности центральных нервных образований. Впоследствии это предположение нашло прямое экспериментальное подтверждение (Экклс, Реншоу), когда было показано существование специальных вставочных нейронов, имеющих синаптические контакты с двигательными нейронами. Активация этих вставочных нейронов закономерно приводила к торможению двигательных нейронов. В зависимости от нейронного механизма, способа вызывания тормозного процесса в ЦНС различают несколько видов торможения: постсинаптическое, пресинаптическое, пессимальное. Постсиналтическое торможение -- основной вид торможения, развивающийся в постсинаптической мембране аксосоматических и аксодендритических синапсов под влиянием активации тормозных нейронов, в концевых разветвлениях аксонных отростков которых освобождается и поступает в синаптическую щель тормозной медиатор. Тормозной эффект таких нейронов обусловливается специфической природой медиатора -- химического переносчика сигнала с одной клетки на другую. Наиболее распространенным тормозным медиатором является гамма-аминомасляная кислота (ГАМК). Химическое действие ГАМК вызывает в постсинаптической мембране эффект гиперполяризации в виде тормозных постсинаптических потенциалов (ТПСП), пространственно-временная суммация которых повышает уровень мембранного потенциала (гиперполяризация), приводит к урежению или полному прекращению генерации распространяющихся ПД. Возвратным торможением называется угнетение (подавление) активности нейрона, вызываемое возвратной коллатералью аксона нервной клетки. Так, мотонейрон переднего рога спинного мозга прежде чем покинуть спинной мозг дает боковую (возвратную) ветвь, которая возвращается назад и заканчивается на тормозных нейронах (клетки Реншоу). Аксон последней заканчивается на мотонейронах, оказывая на них тормозное действие. Пресинаптическое торможение развертывается в аксоаксональных синапсах, блокируя распространение возбуждения по аксону. Пресинаптическое торможение часто выявляется в структурах мозгового ствола, в спинном мозге. Пессимальное торможение представляет собой вид торможения центральных нейронов. Оно наступает при высокой частоте раздражения. В первый момент возникает высокая частота ответного возбуждения. Через некоторое время стимулируемый центральный нейрон, работая в таком режиме, переходит в состояние торможения.
Еще одной важной особенностью передачи возбуждения в ЦНС является участие в этом процессе клеток нейроглии или клеток - спутниц. Ранее считалось, что эти клетки выполняют роль хелперов, помогая в трансформации питательных веществ к нейронам. Однако последние исследования показали, что клетки глии принимают непосредственное участие в передачи нервного импульса в синапсе.Вот один из примеров влияния нейроглиальных клеток. Астроциты регулируют синаптическую передачу сигнала несколькими способами. Аксон передает нервный сигнал дендриту за счет выброса нейротрансмиттера (обозначен зеленым цветом) - в данном случае глутамата. Кроме того, аксон высвобождает АТФ (желтый). Эти соединения вызывают перемещение кальция (фиолетовый) внутрь астроцитов, что побуждает их вступить в общение друг с другом за счет высвобождения собственного АТФ. Астроциты могут усилить передачу нервного сигнала с помощью выброса такого же нейротрансмиттера (глутамата) или ослабить сигнал путем поглощения нейротрансмиттера или выброса связывающих его белков (синие). Кроме того, астроциты могут выделить сигнальные молекулы (красные), которые заставят аксон увеличить или уменьшить выброс нейротрансмиттера, когда он возобновит импульсацию. Модификация связей между нейронами - один из способов, с помощью которых головной мозг корректирует свои реакции на раздражители по мере накопления опыта - так происходит процесс обучения. В периферической нервной системе синапсы окружены не астроцитами, а шванновскими клетками
И это еще не самое поразительное. Оказалось, что глиальные клетки также способны к передачи сигналов, но в отличие от нейронов, «общение» клеток нейроглии идет по другому механизму. Клетки нейроглии также могут производить контроль над передачей в синапсе, уменьшая или увеличивая концентрацию нейромедиатора в синаптической щели. Чтобы это доказать было проведено огромное количество экспериментов. Вот один зи них. Ришар Робитайль (Richard Robitaille) из Монреальского университета обнаружил, что величина электрического потенциала, возникающего в мышце лягушки под влиянием стимуляции синапса, увеличивалась или уменьшалась в зависимости от того, какие химические вещества он вводил в шванновские клетки, окружающие этот синапс. Подобные изменения эффективности синапсов ученые рассматривают в качестве главного фактора пластичности нервной системы, т.е. ее способности изменять реакции на основании прошлого опыта, и глия, таким образом, может играть важную роль в клеточных процессах обучения и памяти
В процессе изучения механизмов работы мозга, в особенности нейронных процессов запоминания и мышления, ученые-нейрофизиологи пришли к выводу, что многообразие выполняемых мозгом функций невозможно объяснить на клеточном уровне - как бы сложен не был нейрон, он не может обеспечить мозгу полную функциональность. Так родилась идея о том, что в мозгу существуют иерархические системы нейронов, которые получили название нейронных сетей. Главным постулатом теории нейронных сетей можно считать идею синергетики: « Целое есть нечто иное, чем просто сумма элементов, это взаимодействие, приводящее к образованию новых качеств » Другими словами, нейроны, объединяясь между собой приобретают дополнительные возможности. Концепция организации и самоорганизации в строении и функций нервной системы получила наибольшее развитие в представлениях о модульной (ансамблевой) конструкции нервной системы как принципиальной основы построения функциональных систем мозга.
Образования головного мозга состоят из повторяющихся локальных нейронных сетей, модулей, которые варьируют от структуры к структуре по числу клеток, внутренним связям и способу обработки информации. Каждый модуль, или нейронный ансамбль, представляет собой совокупность локальных нейронных сетей, которая обрабатывает информацию, передает ее со своего входа на выход, подвергает трансформации, определяемой общими свойствами структуры и ее внешними связями. Один модуль может входить в состав различных функциональных образований. Группирование нейронов в ансамбли нервных клеток для совместного выполнения функций следует рассматривать как проявление кооперативного способа деятельности. Основным функциональным признаком ансамблевой организации является локальный синергизм реакций нейронов центральной ядерной структуры ансамбля, окруженной зоной заторможенных и нереагирующих нейронов (А. Б. Коган, О. Г. Чораян). Размеры группировок нейронов в горизонтальной плоскости в среднем достигают диаметра 100--150 мкм, что соответствует размерам клеточных объединений, выявляемых по функциональным показателям синергичности возбудительных реакций на адекватное раздражение их рецептивных полей. Размеры зоны синаптических окончаний вторичного специфического афферентного волокна в корковых структурах (100--150 мкм) близок к пространственным характеристикам элементарного нейронного ансамбля. Примерно такие же размеры имеет и сфера терминальных разветвлений отдельного неспецифического волокна, но общая зона всех ветвей неспецифического волокна образует сферу диаметром 600-- 700 мкм, что соответствует размерам зоны ветвления первичного специфического афферентного волокна. Схема активации нейронного ансамбля может быть представлена следующим образом.
Сигналы, поступающие по первичным специфическим и неспецифическим афферентам, активируют вначале обширную зону, вовлекая в процесс возбуждения группу нейронных ансамблей. Более дробная конфигурация нейронных группировок в зоне диаметром 100--150 мкм формируется под влиянием вторичных афферентных волокон, несущих сигналы внутрицентрального взаимодействия. Из множества элементарных нейронных ансамблей образуется центральная мозаика активности, определяющая постоянно меняющийся «узор» возбуждения и торможения в нервном центре.
Таким образом, ансамблевая конструкция центральных проекционных зон анализатора в коре большого мозга представляется как результат двух физиологических механизмов:
1) мощной активации большой зоны центральных нейронов, связанных с терминалами афферентных волокон;
2) центральными нейронами, в функциональном отношении аналогичными клеткам Реншоу в спинном мозге, препятствующими широкому растеканию центрального возбуждения путем формирования тормозной каемки вокруг возбужденных нервных клеток.
Разнообразие «узоров» возбуждения и торможения в центральной мозаике нейрональной активности формируется из элементарных микроочагов возбуждения, которые образуют фундамент иерархической конструкции клеточных систем мозга. Принципиальным моментом ансамблевой концепции работы мозга является утверждение, что на каждом этапе переработки информации в качестве функциональной единицы выступает не отдельно взятая нервная клетка, а внутренне интегрированное клеточное объединение -- нейронный ансамбль, основными характеристиками которого является: а) локальный синергизм реакции нейронов центральной зоны; б) наличие тормозной окантовки, образованной клетками с тормозными реакциями на данное раздражение, окружающими центральную зону клеток с возбудительными реакциями; в) наличие определенного числа нейронов со стабильными ответами (обычно они расположены в центральной ядерной зоне ансамбля) при значительно большем числе клеток с вариабельными параметрами импульсного ответа на адекватное афферентное раздражение.
Элементарные нейронные ансамбли как функциональные единицы рабочих механизмов мозга играют роль своего рода «кирпичиков», из которых формируются более сложные блоки и конструкции мозга. Наблюдающаяся структурная и функциональная избыточность ансамблевой модульной конструкции центральных нервных образований как следствие ансамблевой организации ассоциируется со значительной информационной избыточностью сенсорных посылок, распространяющихся по нейронным системам мозга. Избыточность нейронных элементов и межнейронных связей в ансамбле -- характерная черта структурно-функциональной организации центральных нервных образований -- приводит к мультифункциональности, которой обусловлены пластичность и высокие компенсаторные способности нервных механизмов.
Когда индивидуальное участие нейрона в данной реакции становится не обязательным, а вероятностным и возможна относительная взаимозаменяемость элементов, повышаются надежность нервного механизма управления и связи в организме. Подвижная динамическая структура нейронных ансамблей, формируемая вероятностным участием в них отдельных нервных клеток, обусловливает большую гибкость и легкость перестроек межнейронных связей; эти перестройки объясняют высокую пластичность, характерную для нервных механизмов высших отделов мозга. Вероятностные нейронные ансамбли образуются структурно-функциональными блоками нервных клеток, воспринимающих и перерабатывающих идентичную афферентную информацию. Эти ансамбли составляют основу функциональной мозаики процессов центрального возбуждения и торможения. Мозаика вероятностных нейронных ансамблей на всех уровнях конструкции нервного контура управления, обеспечивающего разные формы целенаправленного поведения, образует функциональную систему мозга. Нейрокибернетика (кибернетика нервной системы) -- наука, изучающая процессы управления и связи в нервной системе.
Такое определение предмета и задач кибернетики нервной системы позволяет выделить три составных компонента (раздела) ее: организация, управление и информационная деятельность. В сложных полифункциональных интегративных системах мозга невозможно раздельное функционирование элементов организации, управления и информационной деятельности, они тесно связаны и взаимообусловлены. Организация нервной системы во многом предопределяет механизмы управления и эффективности передачи и переработки информации. Управление модифицирует механизмы организации и самоорганизации, обеспечивает эффективность и надежность информационной функции системы. Информационная деятельность является обязательным условием совершенствования процесса организации, управления как оперативный прием эффективного воздействия и целенаправленного видоизменения. Организация. В центре внимания теории организации и самоорганизации в нейрокибернетике лежит представление о системных свойствах конструкций мозга на разных морфологических и эволюционных уровнях конструкции нервной системы. Ведущим свойством системы является организация. Система -- совокупность элементов, где конечный результат кооперации проявляется не в виде суммы эффектов составляющих элементы, а в виде произведения эффектов, т. е. системность как характерное свойство организованной сложности предполагает неаддитивное сложение функций отдельных компонентов.
Объединение двух и более элементов в системе рождает новое качество, которое не может быть выражено через качество составляющих компонентов. Отдельный нейрон является носителем свойств, позволяющих ему интегрировать влияние других нейронов, строить свою активность на основании оценки результатов интеграции. С другой стороны, на основе таких свойств происходит объединение индивидуальных нейронов в системы, обладающие новыми свойствами, отсутствующими у входящих в их состав единиц. Характерной чертой таких систем является то, что активность каждого составного элемента в них определяется не только влияниями, поступающими по прямым афферентным путям каждого элемента, но и состоянием других элементов системы. Свойство системности в нервных образованиях возникает тогда, когда деятельность каждой нервной клетки оказывается функцией не только непосредственно поступившего к ней сигнала, но и функцией тех процессов, которые происходят в остальных клетках нервного центра (П. Г. Костюк). Оптимальная организация нервных конструкций обычно сочетается со значительной структурой или функциональной избыточностью, которой принадлежит решающая роль в обеспечении пластичности и надежности биологической системы.
У нейронных сетей много важных свойств, но ключевое из них - это способность к обучению. Обучение нейронной сети в первую очередь заключается в изменении «силы» синаптических связей между нейронами. Следующий пример наглядно это демонстрирует. В классическом опыте Павлова, каждый раз непосредственно перед кормлением собаки звонил колокольчик. Собака достаточно быстро научилась ассоциировать звонок колокольчика с приемом пищи. Это явилось следствием того, что синаптические связи между участками головного мозга, ответственными за слух и слюнные железы, усилились. И в последующем возбуждение нейронной сети звуком колокольчика, стало приводить к более сильному слюноотделению у собаки.
№31 В центральной нервной системе постоянно функционируют два основных, взаимосвязанных процесса - возбуждение и торможение.
Торможение - это активный биологический процесс, направленный на ослабление, прекращение или предотвращение возникновения процесса возбуждения. Явление центрального торможения, т. е. торможения в ЦНС, было открыто И. М. Сеченовым в 1862 г. в опыте, получившим название "опыт сеченовского торможения". Суть опыта: у лягушки на срез зрительных бугров накладывали кристаллик поваренной соли, что приводило к увеличению времени двигательных рефлексов, т. е. к их торможению. Время рефлекса - это время от начала раздражения до начала ответной реакции.
Торможение в ЦНС выполняет две основные функции. Во-первых, оно координирует функции, т. е. оно направляет возбуждение по определенным путям к определенным нервным центрам, при этом выключая те пути и нейроны, активность которых в данный момент не нужна для получения конкретного приспособительного результата. Важность этой функции процесса торможения для функционирования организма можно наблюдать в эксперименте с введением животному стрихнина. Стрихнин блокирует тормозные синапсы в ЦНС (в основном глицинергические) и тем самым устраняет основу для формирования процесса торможения. В этих условиях раздражение животного вызывает некоординированную реакцию, в основе которой лежит диффузная (генерализованная) иррадиация возбуждения. При этом приспособителъная деятельность становится невозможной. Во-вторых, торможение выполняет охранительную или защитную функцию, пред охраняя нервные клетки от перевозбуждения и истощения при действии сверхсильных и длительных раздражителей.
Теории торможения. Н. Е. Введенским (1886) было показано, что очень частые раздражения нерва нервно-мышечного препарата вызывают сокращения мышцы в виде гладкого тетануса, амплитуда которого мала. Н. Е. Введенский полагал, что в нервно-мышечном препарате при частом раздражении возникает процесс пессимального торможения, т. е. торможение является как бы следствием перевозбуждения. Сейчас установлено, что его механизм заключается в длительной, застойной деполяризации мембраны, вызванной избытком медиатора (ацетилхолина), выделяющегося при частой стимуляции нерва. Мембрана полностью теряет возбудимость из-за инактивации натриевых каналов и не в состоянии ответить на приход новых возбуждений выделением новых порций медиатора. Таким образом, возбуждение переходит в противоположный процесс - торможение. Следовательно, возбуждение и торможение являются как бы одним и тем же процессом, возникают в одних и тех же структурах, с участием одного и того. же медиатора. Данная теория торможения называется унитарно-химической или монистической.
Медиаторы на постсинаптической мембране могут вызывать не только деполяризацию (ВПСП), но и гиперполяризацию (ТПСП). Эти медиаторы увеличивают проницаемость субсинаптической мембраны для ионов калия или хлора, в результате чего постсинаптическая мембрана гиперполяризуется и возникает ТПСП. Данная теория торможения получила название бинарно-химической, согласно которой торможение и возбуждение развиваются по разным механизмам, с участием тормозных и возбуждающих медиаторов соответственно.
Классификация центрального торможения. Торможение в ЦНС можно классифицировать по различным признакам:
• по электрическому состоянию мембраны - деполяризационное и гиперполяризационное;
• по отношению к синапсу - пресинаптическое и постсинаптическое;
• по нейрональной организации - поступательное, латеральное (боковое), возвратное, реципрокное.
Постсинаптическое торможение развивается в условиях, когда медиатор, выделяемый нервным окончанием, изменяет свойства постсинаптической мембраны таким образом, что способность нервной клетки генерировать процессы возбуждения подавляется. Постсинаптическое торможение может быть деполяризационным, если в его основе лежит процесс длительной деполяризации, и гиперполяризационным, если - гиперполяризации.
Пресинаптическое торможение обусловлено наличием вставочных тормозных нейронов, которые формируют аксо-аксональные синапсы на афферентных терминалях, являющихся пресинаптическими по отношению, например, к мотонейрону. В любом случае активации тормозного интернейрона, он вызывает деполяризацию мембраны афферентных терминалей, ухудшающей условия проведения по ним ПД, что таким образом уменьшает количество выделяемого ими медиатора, и, следовательно, эффективность синаптической передачи возбуждения к мотонейрону, что уменьшает его активность (рис. 14). Медиатором в таких аксо-аксональных синапсах является, по-видимому, ГАМК, которая вызывает повышение проницаемости мембраны для ионов хлора, которые выходят из терминали и частично, но длительно ее деполяризуют.
Поступательное торможение обусловлено включением тормозных нейронов на пути следования возбуждения
Возвратное торможение осуществляется вставочными тормозными нейронами (клетками Реншоу). Импульсы от мотонейронов, через отходящие от его аксона коллатерали, активируют клетку Реншоу, которая в свою очередь вызывает торможение разрядов данного мотонейрона (рис. 16). Это торможение реализуется за счет тормозных синапсов, образованных клеткой Реншоу на теле активирующего ее мотонейрона. Таким образом, из двух нейронов формируется контур с отрицательной обратной связью, которая дает возможность стабилизировать частоту разряда мотонейрона и подавлять избыточную его активность.
Латеральное (боковое) торможение. Вставочные клетки формируют тормозные синапсы на соседних нейронах, блокируя боковые пути распространения возбуждения (рис. 17). В таких случаях возбуждение направляется только по строго определенному пути.
Именно латеральное торможение обеспечивает, в основном, системную (направленную) иррадиацию возбуждения в ЦНС.
Реципрокное торможение. Примером реципрокного торможения является торможение центров мышц-антагонистов. Суть этого вида торможения заключается в том, что возбуждение проприорецепторов мышц-сгибателей одновременно активирует мотонейроны данных мышц и вставочные тормозные нейроны (рис. 18). Возбуждение вставочных нейронов приводит к постсинаптическому торможению мотонейронов мышц-разгибателей. Дополнение: Механизмы торможения проявляются в прекращении или уменьшении активности нервных клеток. В отличие от возбуждения торможение — локальный нераспространяющийся процесс, возникающий на клеточной мембране.
Сеченовское торможение. Наличие процесса торможения в ЦНС впервые было показано Сеченовым в 1862 г. в экспериментах на лягушке. Выполняли разрез головного мозга лягушки на уровне зрительных бугров и измеряли время рефлекса отдергивания задней лапы при погружении ее в раствор серной кислоты (метод Тюрка). При наложении на разрез зрительных бугров кристаллика поваренной соли время рефлекса увеличивалось. Прекращение воздействия соли на зрительные бугры приводило к восстановлению исходного времени рефлекторной реакции. Рефлекс отдергивания лапки обусловлен возбуждением спинальных центров. Кристаллик соли, раздражая зрительные бугры, вызывает возбуждение, которое распространяется к спинальным центрам и тормозит их деятельность. И.М. Сеченов пришел к выводу, что торможение является следствием взаимодействия двух и более возбуждений на нейронах ЦНС. В этом случае одно возбуждение неизбежно становится тормозимым, а другое — тормозящим. Подавление одним возбуждением другого происходит как на уровне постсинаптических мембран (постсинаптическое торможение), так и за счет уменьшения эффективности действия возбуждающих синапсов на пресинаптическом уровне (пресинаптическое торможение).
№32 Принципы координационной деятельности центральной нервной системы
Для осуществления сложных реакций необходима интеграция работы отдельных нервных центров. Большинство рефлексов являются сложными, последовательно и одновременно совершающимися реакциями. Рефлексы при нормальном состоянии организма строго упорядочены, так как имеются общие механизмы их координации. Возбуждения, возникающие в ЦНС, иррадиируют по ее центрам. Координация обеспечивается избирательным возбуждением одних центров и торможением других. Координация - это объединение рефлекторной деятельности ЦНС в единое целое, что обеспечивает реализацию всех функций организма. Выделяют следующие основные принципы координации: 1. Принцип иррадиации возбуждений. Нейроны разных центров связаны между собой вставочными нейронами, поэтому импульсы, поступающие при сильном и длительном раздражении рецепторов, могут вызвать возбуждение не только нейронов центра данного рефлекса, но и других нейронов. Например, если раздражать у спинальной лягушки одну из задних лапок, слабо сдавливая ее пинцетом, то она сокращается (оборонительный рефлекс), если раздражение усилить, то происходит сокращение обеих задних лапок и даже передних. Иррадиация возбуждения обеспечивает при сильных и биологически значимых раздражениях включение в ответную реакцию большего количества мотонейронов. 2. Принцип общего конечного пути. Импульсы, приходящие в ЦНС по разным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же вставочным, или эфферентным, нейронам. Шеррингтон назвал это явление "принципом общего конечного пути". Один и тот же мотонейрон может возбуждаться импульсами, приходящими от различных рецепторов (зрительных, слуховых, тактильных), т.е. участвовать во многих рефлекторных реакциях (включаться в различные рефлекторные дуги). Так, например, мотонейроны, иннервирующие дыхательную мускулатуру, помимо обеспечения вдоха участвуют в таких рефлекторных реакциях, как чихание, кашель и др. На мотонейронах, как правило, конвергируют импульсы от коры больших полушарий и от многих подкорковых центров (через вставочные нейроны или за счет прямых нервных связей). На мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна пирамидного тракта, экстрапирамидных путей, от мозжечка, ретикулярной формации и других структур. Мотонейрон, обеспечивающий различные рефлекторные реакции, рассматривается как их общий конечный путь. В какой конкретный рефлекторный акт будут вовлечены мотонейроны, зависит от характера раздражений и от функционального состояния организма. 3. Принцип доминанты. Был открыт А.А.Ухтомским, который обнаружил, что раздражение афферентного нерва (или коркового центра), обычно ведущего к сокращению мышц конечностей при переполнении у животного кишечника, вызывает акт дефекации. В данной ситуации рефлекторное возбуждение центра дефекации" подавляет, тормозит двигательные центры, а центр дефекации начинает реагировать на посторонние для него сигналы. А.А.Ухтомский считал, что в каждый данный момент жизни возникает определяющий (доминантный) очаг возбуждения, подчиняющий себе деятельность всей нервной системы и определяющий характер приспособительной реакции. К доминантному очагу конвергируют возбуждения из различных областей ЦНС, а способность других центров реагировать на сигналы, приходящие к ним, затормаживается. Благодаря этому создаются условия для формирования определенной реакции организма на раздражитель, имеющий наибольшее биологическое значение, т.е. удовлетворяющий жизненно важную потребность. В естественных условиях существования доминирующее возбуждение может охватывать целые системы рефлексов, в результате возникает пищевая, оборонительная, половая и другие формы деятельности. Доминантный центр возбуждения обладает рядом свойств: 1) для его нейронов характерна высокая возбудимость, что способствует конвергенции к ним возбуждений из других центров; 2) его нейроны способны суммировать приходящие возбуждения; 3) возбуждение характеризуется стойкостью и инертностью, т.е. способностью сохраняться даже тогда, когда стимул, вызвавший образование доминанты, прекратил действие. Несмотря на относительную стойкость и инертность возбуждения в доминантном очаге, деятельность ЦНС в нормальных условиях существования весьма динамична и изменчива. ЦНС обладает способностью к перестройке доминантных отношений в соответствии с изменяющимися потребностями организма. Учение о доминанте нашло широкое применение в психологии, педагогике, физиологии умственного и физического труда, спорте. 4. Принцип обратной связи. Процессы, происходящие в ЦНС, невозможно координировать, если отсутствует обратная связь, т.е. данные о результатах управления функциями. Обратная связь позволяет соотнести выраженность изменений параметров системы с ее работой. Связь выхода системы с ее входом с положительным коэффициентом усиления называется положительной обратной связью, а с отрицательным коэффициентом - отрицательной обратной связью. Положительная обратная связь в основном характерна для патологических ситуаций. Отрицательная обратная связь обеспечивает устойчивость системы (ее способность возвращаться к исходному состоянию после прекращения влияния возмущающих факторов). Различают быстрые (нервные) и медленные (гуморальные) обратные связи. Механизмы обратной связи обеспечивают поддержание всех констант гомеостаза. Например, сохранение нормального уровня кровяного давления осуществляется за счет изменения импульсной активности барорецепторов сосудистых рефлексогенных зон, которые изменяют тонус вагуса и вазомоторных симпатических нервов. 5. Принцип реципрокности. Он отражает характер отношений между центрами, ответственными за осуществление противоположных функций (вдоха и выдоха, сгибание и разгибание конечностей), и заключается в том, что нейроны одного центра, возбуждаясь, тормозят нейроны другого и наоборот. 6. Принцип субординации (соподчинения). Основная тенденция в эволюции нервной системы проявляется в сосредоточении функций регуляции и координации в высших отделах ЦНС - цефализация функций нервной системы. В ЦНС имеются иерархические взаимоотношения - высшим центром регуляции является кора больших полушарий, базальные ганглии, средний, продолговатый и спинной мозг подчиняются ее командам. 7. Принцип компенсации функций. ЦНС обладает огромной компенсаторной способностью, т.е. может восстанавливать некоторые функции даже после разрушения значительной части нейронов, образующих нервный центр (см. пластичность нервных центров). При повреждении отдельных центров их функции могут перейти к другим структурам мозга, что осуществляется при обязательном участии коры больших полушарий. У животных, которым после восстановления утраченных функций удаляли кору, вновь происходила их утрата. При локальной недостаточности тормозных механизмов или при чрезмерном усилении процессов возбуждения в том или ином нервном центре определенная совокупность нейронов начинает автономно генерировать патологически усиленное возбуждение - формируется генератор патологически усиленного возбуждения. При высокой мощности генератора возникает целая система функционирующих в едином режиме нейрональных образований, что отражает качественно новый этап в развитии заболевания; жесткие связи между отдельными составными элементами такой патологической системы лежат в основе ее устойчивости к различным лечебным воздействиям. Изучение природы этих связей позволило Г.Н.Крыжановскому обнаружить новую форму внутрицентральных отношений и интегративной деятельности ЦНС - принцип детерминанты. Его суть состоит в том, что структура ЦНС, формирующая функциональную посылку, подчиняет себе те отделы ЦНС, к которым она адресована и образует вместе с ними патологическую систему, определяя характер ее деятельности. Для такой системы характерно отсутствие постоянства и неадекватности функциональных посылок, т.е. такая система является биологически отрицательной. Если в силу тех или иных причин патологическая система исчезает, то образование ЦНС, игравшее главную роль, теряет свое детерминантное значение.
№33 Возможно не все! Автономная и соматическая нервная системы, их анатомо-фуцнкциональные различия
Периферическую нервную систему разделяется на две части: соматическую и вегетативную
СОМАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА обеспечивает чувствительные и двигательные функции организме.
СОМАТИЧЕСКИЕ ФУНКЦИИ управляются произвольно
ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА обеспечивает Регуляцию всех внутренних органов организма, сосудов, потовых желез
Оказывает трофическое и адаптационное влияние на мускулатуру, органы чувств, на саму центральную систему
ВЕГЕТАТИВНЫЕ ПРОЦЕССЫ произвольно не управляются
АНАТОМО-ФИЗИОЛОГИЧЕСКИМИ ОТЛИЧИЯМИ вегетативной нервной системы от соматической являются:
1. Различная локализация ядер в ЦНС центры вегетативной нервной системы локализуются в более ограниченных участках ЦНС (только в среднем и продолговатом, а также отдельных сегментах спинного мозга) центры соматической нервной системы локализуются в различных отделах головного мозга и на всем протяжении спинного мозга
2. Двухнейронная структура эфферентных вегетативных путей эфферентные вегетативные волокна обязательно прерываются в периферических вегетативных ганглиях, образуя синапсы, эфферентные соматические волокна спинного мозга идут, не прерываясь от центра до рабочего органа
3. Различия в выходе волокон из ЦНС Вегетативные волокна имеют очаговый выход и выходят из трех отстоящих друг от друга ограниченных участков мозга: черепного, грудно-поясничного (с I-II грудного по III-IV поясничный) и крестцового (I-III или II-IV сегменты).
Имеют диффузную иннервацию
Соматические волокна имеют сегментарный выход и перекрывают иннервируемые области с участием трех смежных сегментов (метамерная иннервация)
4. Разный калибр и наличие мякотной оболочки нервного волокна
Вегетативные волокна имеют более тонкий калибр, тонкий слой миелина содержит только преганглионарное волокно, постганглионарное волокно - безмиелиновое Соматическое нервное волокно является миелиновым
5. Вегетативные (относительно соматических нервных волокон) имеют более низкую возбудимость, лабильность и скорость проведения нервного импульса
№34Сравнительная характеристика симпатического и парасимпатического отделов вегетативной нервной системы
В той части вегетативной нервной системы, которую называют симпатической, тела преганглионарных нейронов расположены в сером веществе грудного (торакального) и поясничного (люмбального) отделов спинного мозга. Поэтому симпатическую систему называют также торако-люмбальной. Аксоны ее преганглионарных нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных цепочкой вдоль позвоночника. Аксоны постганглионарных нейронов контактируют с эффекторными органами. Окончания постганглионарных волокон выделяют в качестве нейромедиатора норадреналин (вещество, близкое к адреналину), и потому симпатическая система определяется также как адренергическая.
Симпатическую систему дополняет парасимпатическая нервная система. Тела ее преганглинарных нейронов расположены в стволе мозга (интракраниально, т.е. внутри черепа) и крестцовом (сакральном) отделе спинного мозга. Поэтому парасимпатическую систему называют также кранио-сакральной. Аксоны преганглионарных парасимпатических нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных вблизи рабочих органов. Окончания постганглионарных парасимпатических волокон выделяют нейромедиатор ацетилхолин, на основании чего парасимпатическую систему называют также холинергической.
Как правило, симпатическая система стимулирует те процессы, которые направлены на мобилизацию сил организма в экстремальных ситуациях или в условиях стресса. Парасимпатическая же система способствует накоплению или восстановлению энергетических ресурсов организма.
Реакции симпатической системы сопровождаются расходом энергетических ресурсов, повышением частоты и силы сердечных сокращений, возрастания кровяного давления и содержания сахара в крови, а также усилением притока крови к скелетным мышцам за счет уменьшения ее притока к внутренним органам и коже. Все эти изменения характерны для реакции «испуга, бегства или борьбы». Парасимпатическая система, наоборот, уменьшает частоту и силу сердечных сокращений, снижает кровяное давление, стимулирует пищеварительную систему.
Симпатическая и парасимпатическая системы действуют координированно, и их нельзя рассматривать как антагонистические. Они сообща поддерживают функционирование внутренних органов и тканей на уровне, соответствующем интенсивности стресса и эмоциональному состоянию человека. Обе системы функционируют непрерывно, но уровни их активности колеблются в зависимости от ситуации.
Парасимпатический отдел вегетативной нервной системы является более древним. Он регулирует деятельность органов, ответственных за стандартные свойства внутренней среды. Симпатический отдел развивается позднее. Он изменяет стандартные условия внутренней среды и органов применительно к выполняемым ими функциям. Это приспособительное значение симпатической иннервации, изменение ею функциональной способности органов было установлено И. П. Павловым. Симпатическая нервная система тормозит анаболические процессы и активизирует катаболические, а парасимпатическая, наоборот, стимулирует анаболические и тормозит катаболические процессы.
Симпатический отдел вегетативной нервной системы широко представлен во всех органах. Поэтому процессы в различных органах и системах организма находят отражение и в симпатической нервной системе. Ее функция зависит и от центральной нервной системы, эндокринной системы, процессов, протекающих на периферии и в висцеральной сфере, а поэтому ее тонус неустойчив, по движен, требует постоянных приспособительно-компенсаторных реакций.
Парасимпатический отдел более автономен и не находится в такой тесной зависимости от центральной нервной и эндокринной систем, как симпатический. Следует упомянуть о связанном с общебиологическим экзогенным ритмом функциональном преобладании в определенное время того или иного отдела вегетативной нервной системы, днем, например,-- симпатического, ночью -- парасимпатического. Вообще для функционирования вегетативной нервной системы характерны периодичность, что связывают, в частности, с сезонными изменениями питания, количеством поступающих в организм витаминов, а также световых раздражении (ввиду участия оптико-вегетативной, или фотоэнергетической, системы в периодичности большинства протекающих в организме процессов).
Дополнительно: Охарактеризуйте структурно-функциональные особенности и важнейшие физиологические свойства симпатического отдела ВНС.
Симпатический отдел. Тела первых нейронов симпатического отдела ВНС расположены преимущественно в задних ядрах гипоталамуса, среднем и продолговатом мозге и в передних рогах спинного мозга, начиная с 1-го грудного и кончая 3—4-м сегментом поясничного ее отдела.
Периферическая (исполнительная) часть ВНС представлена преганглионарными и ганглионарными нейронами.
Симпатический отдел. Тела преганглионарных нейронов располагаются в сером веществе боковых рогов спинного мозга, начиная от 1-го грудного сегмента до 2—3-го поясничного сегмента, и в двигательных ядрах черепных нервов. Миелиновые аксоны этих нейронов представлены медленнопроводящими возбуждение В-волокнами. Аксоны преганглионарных нейронов через синапсы взаимодействуют с нейронами, расположенными в периферических ганглиях.
Околопозвоночные ганглии расположены по обе стороны вдоль позвоночника в виде цепочек, составляющих правый и левый симпатические стволы. Продольно ганглии соединяются межузловыми соединительными ветвями, состоящими из миелиновых и безмиелиновых нервных волокон. Имеются и поперечные связи между ганглиями правой и левой стороны. Кроме этого, ганглии симпатического ствола соединяются со спинномозговыми нервами, благодаря чему они получают возможность иннервировать скелетную мускулатуру. Другая часть постганглионарных волокон направляется к внутренним органам.
Особенности строения симпатических и парасимпатических нервов. Симпатические нервы сформированы в основном преганглионарными, а парасимпатические — постганглионарными нервными волокнами. Преганглионарные волокна симпатической и парасимпатической нервной системы представлены тонкими миелиновыми волокнами типа В, постганглионарые — тонкими безмиелиновыми волокнами типа С.
Локализация ядер – заднее ядро гипоталамуса, нейроны боковых рогов грудных и поясничных сегментов спинного мозга.
Характеристика отростков – прерываются в ганглиях, преганглионарные короткие, тип В, постганглионарные длинные, тип С.
Зона иннервации – иннервирует все внутренние органы
Локализация – парабертебральные (пограничный столб), превертебральные (чревное, солнечное сплетение, брыжеечные узлы).
Медиатор – ацетилхолин, норадреналин.
Физиологические свойства симпатической нервной системы:
1.благодаря мультипликации в симпатических ганглиях распространяющееся из них возбуждение широко охватывает сразу несколько различных органов, т.е. является генерализованным. Эти влияния наиболее отчетливо прослеживаются при эмоциональных реакциях.
2.оказывает активирующие влияния на функции иннервируемых органов: усиливает катаболические реакции, силу и частоту сокращений сердца, повышает артериальное давление, улучшает оксигенацию тканей, увеличивает содержания глюкозы в крови, скорость проведения возбуждения в скелетных мышцах и их тонус, расширяет бронхи, увеличивает объем легочной вентиляции; расширяет зрачки, увеличивает секрецию катехоламинов надпочечниками. При этом одновременно снижается тонус пищеварительного тракта, ослабляются процессы всасывания и ферментативного расщепления в кишечнике.
3. участвует в формировании целостных состояний, как агрессия, стресс, болевые реакции.
4. передача с пре- на ганглионарные нейроны осуществляется с помощью ацетилхолина, а на эффекторы — норадреналина.
5. представлена на периферии на значительном протяжении постганглионарными волокнами типа С, возбуждение на пути от ганглиев к органам распространяется медленнее, чем в парасимпатической системе.
6. Эффекты действия более продолжительны.
7. Электрические потенциалы в симпатических ганглиях характеризуются продолжительными следовыми явлениями. При стимуляции преганглионарных волокон регистрируется быстрый возбуждающий постсинаптический потенциал, который сменяется медленным тормозным постсинаптическим потенциалом.
8. начальная деполяризация обусловлена действием ацетилхолина на никотиновые рецепторы.
Охарактеризуйте структурно-функциональные особенности и важнейшие физиологические свойства парасимпатического отдела ВНС.
Парасимпатический отдел Центральные нейроны расположены в передних отделах гипоталамуса, среднем и продолговатом мозге, во 2-4-м сегментах крестцового отдела спинного мозга.
Периферическая (исполнительная) часть ВНС представлена преганглионарными и ганглионарными нейронами.
Парасимпатический отдел. Тела преганглионарных нейронов расположены в среднем и продолговатом мозге среди двигательных нейронов черепных нервов: глазодвигательного, лицевого, языкоглоточного и блуждающего, а также в сером веществе боковых рогов крестцового отдела спинного мозга.
Вместе с черепными нервами преганглионарные волокна распространяются к ганглионарным нейронам, расположенным в крылонебном, подчелюстном и ушном ганглиях. Отходящие от них постганглионарные волокна иннервируют глазное яблоко, аккомодационную мышцу и сфинктер зрачка, поднижнечелюстную, подъязычную и околоушную слюнные железы.
Преганглионарные волокна блуждающего нерва распространяются к нейронам, расположенным в ганглиях органов грудной и верхней части брюшной полости.
Аксоны нейронов крестцового отдела спинного мозга через тазовые нервы адресуются к нейронам, располагающимся в ганглиях органов нижней части брюшной полости и таза, иннервируя нижнюю часть толстой кишки, прямую кишку, мочевой пузырь, нижнюю часть мочеточника и наружные половые органы.
Особенности строения симпатических и парасимпатических нервов. Симпатические нервы сформированы в основном преганглионарными, а парасимпатические — постганглионарными нервными волокнами. Преганглионарные волокна симпатической и парасимпатической нервной системы представлены тонкими миелиновыми волокнами типа В, постганглионарые — тонкими безмиелиновыми волокнами типа С.
Локализация ядер – передний гипоталамус, средний мозг, мост, продолговатый мозг, боковые рога I-V крестцовых сегментов спинного мозга.
Характеристика отростков - прерываются в ганглиях, преганглионарные длинные, тип В, постганглионарные короткие, тип С.
Зона иннервации – ограничена (нет в надпочечниках и стенках большинства сосудов)
Локализация –в иннервируемых органах (интрамурально) или рядом с ними.
Медиатор - ацетилхолин
Физиологические свойства парасимпатической нервной системы:
1. влияния направлены и локальны. Оказывает ограниченное воздействие в пределах иннервируемого органа.
2. оказывает успокаивающее, расслабляющее действие на большинство функций организма; снижается возбудимость ЦНС и миокарда, уменьшаются интенсивность метаболизма, сила и частота сердечных сокращений, кровяное давление, объем легочной вентиляции, температура тела; увеличивается секреция инсулина и как следствие снижается концентрация глюкозы в крови и увеличивается внутриклеточное депонирование ее в виде гликогена. При этом одновременно усиливаются моторная, секреторная и всасывательная функции желудочно-кишечного тракта.
3. усиливает анаболические реакции.
4.Парасимпатические влияния доминируют в формировании сна и психологического субъективного чувства удовлетворения.
5.Медиатором в преганглионарных и постганглионарных волокнах служит ацетилхолин.
6.Парасимпатическая нервная система представлена на значительном расстоянии преганглионарными волокнами типа В. Вследствие этого возбуждения от центра до органа доходят быстрее, чем по симпатическим нервам.
7.Эффекты действия парасимпатических нервов менее продолжительны.
Дополнительно: Сравнительная характеристика симпатического и парасимпатического отделов вегетативной нервной системы.
Автономную нервную систему подразделяют на симпатический, парасимпатический и метасимпатический отделы. У симпатического и парасимпатического отделов появились дуги спинного мозга и образованием собственных центров – ядер спинного и головного мозга, а также высшего центра – гипоталамической области. Эмбриональным источником клеток автономной нервной системы у млекопитающих служит ганглиозная пластинка, которая подразделяется на сомиты, дающие впоследствии симпатическую и парасимпатическую НС.
И СНС и ПНС делятся на центральную и периферическую части, передача возбуждения осуществляется в основном по двухнейронному пути: преганглионарный нейрон располагается в сером веществе мозга, постганглионарный вынесен далеко на периферию.
Происхождение нервных волокон: СНС - Выходят из черепного, грудного и поясничного отделов ЦНС; ПНС - Выходят из черепного (средний и продолговатый мозг) и крестцового отделов ЦНС. Расположение ганглиев: СНС - Рядом со спинным мозгом. Паравертебральные ганглии распологаются по обе стороны позвоночника в виде цепочек, называемых симпатическими стволами. Превертебральные ганглии расположены на значительном удалении от спинного мозга и вдали от иннервируемых органов,поэтому от них идут довольно длинные постганглионарные аксоны, совокупность которых в каждом случае носит название специального нерва; ПНС - Рядом с эффектором. Длина волокон: СНС - Короткие преганглионарные и длинные постганглионарные волокна; ПНС - Длинные преганглионарные и короткие постганглионарные волокна. Число волокон: СНС - Многочисленные постганглионарные волокна; ПНС - Немногочисленные постганглионарные волокна. Распределение волокон: СНС - Преганглионарные волокна иннервируют обширные области; ПНС - Преганглионарные волокна иннервируют ограниченные участки. Зона влияния: СНС - Действие генерализованное: Иннервирует почти все органы брюшной полости, гладкие мышцы всех органов – сосудов, зрачка, волосяных луковиц, легких, органов выделения, потовые, слюнные железы и др.; ПНС – действие местное, иннервируют только определенные зоны тела (органы шеи, грудной и брюшной полости, органы таза, постганглионарные парасимпатические волокна снабжают глазные мышцы, слезные и слюнные железы, мускулатуру и железы пищеварительного тракта, трахею, гортань, легкие, предсердия, выделительные и половые органы). Не иннервируют гладкие мышцы кровеносных сосудов, за исключением половых органов, и артерий мозга. Медиатор: СНС – норадреналин; ПНС – ацетилхолин. Общие эффекты: СНС - повышает интенсивность обмена, усиливает ритмические формы активности, снижает пороги чувствительности; ПНС - Снижает интенсивность обмена или не влияет на нее, снижает ритмические формы активности, восстанавливает пороги чувствительности до нормального уровни. Суммарный эффект: СНС – возбуждающий (искл. Пищевар сист); ПНС – тормозящий (искл. Пищевар сист). В каких условиях активируется: СНС - Доминирует во время опасности, стресса и активности; ПНС - Доминирует в покое, контролирует обычные физиологические функции.
№35 Безусловные рефлексы
Это врожденные рефлексы, которые не требуют предварительной выработки, при действии раздражителя реализуются однотипно, без особых предварительных условий.
Каждый безусловный рефлекс имеет свою рефлексогенную зону, реализуется по генетически закрепленным реф-лекторным дугам при действии натуральных специфических раздражителей.
Безусловные рефлексы являются видовыми, т.е. присущи всем особям данного вида.
К безусловным рефлексам относятся.
1. Рефлексы, направленные на сохранение вида. Они: наиболее биологически значимые, преобладают над другими рефлексами, являются доминирующими в конкурентной ситуации. К ним относятся: половой, родительский, территориальный (это - охрана своей территории), иерархарический (принцип соподчинения) рефлексы.
2. Рефлексы самосохранения.
Они направлены на сохранение особи, личности, ин-дивидума: питьевой, пищевой, оборонительный рефлексы, рефлекс агрессивности.
3. Рефлексы саморазвития.
К ним относятся исследовательский, игровой (выражен у детей; взрослые - деловые игры), имитационный (подражание отдельным личностям, событиям), рефлекс преодоления (свободы).
Дополнительные классификации безусловных рефлексов:
1. По расположению рецепторов - экстеро-, проприо-, интероцептивные рефлексы.
2. От вида ощущения - болевые, тактильные рефлексы.
3. От уровня замыкания в ЦНС - спинальные, бульбарные рефлексы.
4. По биологическому значению - половые, пищевые, защитные рефлексы.
Сложнейшие безусловные рефлексы (инстинкты) представляют собой видовые стереотипы поведения, организующиеся на базе интегративных рефлексов по генетически заданной программе. В качестве запускающих стереотипные поведенческие реакции раздражений выступают стимулы, имеющие отношение к питанию, защите, размножению и другим биологически важным потребностям организма.
Сложнейшие безусловные рефлексы образованы последовательными интегративными реакциями, построенными таким образом, что завершение одной реакции становится началом следующей. Адаптивность инстинктов усиливается благодаря наслоению на сложнейшие безусловные рефлексы условных, приобретаемых на ранних этапах онтогенеза. Нервный субстрат, ответственный за физиологические механизмы инстинктивного поведения, представляет иерархическую систему соподчиненных центров интегративных, координационных и элементарных безусловных рефлексов. Жесткая предопределенность инстинктивных реакций обусловлена этапной последовательностью актов инстинктивного поведения, ограничивающей сферу функционирования обратной связи от последующего этапа к предыдущему, уже реализованному. Инстинктивные реакции отражают исторический опыт вида. В субъективной сфере человека сложнейшие безусловные рефлексы проявляются в виде последовательных влечений и желаний, в сложной игре эмоций.
Дополнительно: Безусловные рефлексы— врожденные. Безусловные рефлексы возникают на основе врожденных рефлекторных дуг. При действии адекватных раздражителей на соответствующие рецепторы безусловные рефлексы проявляются относительно постоянно.
К сложным безусловным рефлексам относятся пищевые, оборонительные, половые, ориентировочно-исследовательские, родительские и др. Следует особо выделить ориентировочно-исследовательскую деятельность — реакцию животных на неожиданные, как правило, новые раздражители. Сложные безусловные рефлексы проявляются в виде специфических поведенческих реакций животных при действии на них соответствующих раздражителей. Наиболее демонстративен в этом плане сложный пищевой рефлекс. Он проявляется при действии пищи на дистантные рецепторы или на рецепторы пищеварительного тракта животного в двигательной, а также секреторной и других вегетативных реакциях — изменении дыхания, деятельности сердца и др. Сложный оборонительный рефлекс наряду с двигательной реакцией животного включает также изменение ряда вегетативных функций: секреторной деятельности пищеварительных желез, деятельности сердца, дыхания, потоотделения и т.д
№36 Условный рефлекс — приобретаются живыми существами в индивидуальной жизни. Они связаны с обучением. Это чрезвычайно изменчивая форма рефлекторной деятельности. Ответное действие животного определяется не самим стимулом, а возникает в результате неоднократного совпадения того или иного внешнего (условного) стимула с жизненно важной деятельностью (безусловными рефлексами). Тогда ранее относительно индифферентный стимул начинает опережающе вызывать реакцию, характерную для безусловного раздражителя. Иными словами, в выработанном условном рефлексе условный стимул опережающе отражает свойства сочетанного с ним безусловного раздражителя.
Непременным условием образования условных рефлексов является подкрепление, когда ранее индифферентный раздражитель неоднократно сочетается с последующим безусловным рефлексом.
Другой принцип, характеризующий условнорефлекторную деятельность – принцип сигнальности. Ответная реакция организма при действии не него раздражитеоя несет в себе свойства будущего безусловного воздействия. Условный раздражитель сигнализирует о последующие безусловном рефлексе.
Условные рефлексы классифицируют:
- по названию условных раздражителей — световые, звуковые, обонятельные, тактильные;
- по названию анализатора, воспринимающего условный раздражитель,— зрительные, слуховые, кожные;
- по характеру подкрепления — пищевые, оборонительные, половые;
- по методу выработки — коротко- и длительноотставленные, запаздывательные, следовые и совпадающие.
При короткоотставленных условных рефлексах интервал между условным раздражителем и подкреплением обычно равен 10—20 с и не превышает 30 с. В длительноотставленных условных рефлексах этот интервал составляет более 30 с. В запаздывательных условных рефлексах интервал между условным сигналом и подкреплением равен 3 мин. В следовых условных рефлексах подкрепление предоставляется животному после прекращения действия условного раздражителя. При совпадающих условных рефлексах условный сигнал и подкрепление предоставляются животному одновременно
Правила выработки условных рефлексов:
1. Наличие у животного потребности и соответствующей мотивации. Например, в случае выработки пищевого условного рефлекса животное должно быть голодным. При формировании оборонительного условного рефлекса животное в ответ на повреждающее безусловное воздействие должно испытывать страх.
2. Условный раздражитель должен обязательно подкрепляться безусловным, т.е. удовлетворением жизненно важной потребности.
3. Условный раздражитель должен предшествовать подкреплению.
4. Условный раздражитель должен восприниматься животным, т.е. первоначально вызывать ориентировочно-исследовательскую деятельность. Условный раздражитель должен нести в себе экологическую значимость для животного, восприниматься им. Так, у рыб в качестве условных раздражителей более адекватными являются движение воды, изменение ее состава и др. Для высших животных это могут быть световые, звуковые, обонятельные и другие сенсорные раздражители.
5. Подкрепление по своей биологической значимости и силе должно быть сильнее условного раздражителя.
6. Условный раздражитель должен неоднократно сочетаться с безусловным подкреплением.
7. При выработке соответствующего условного рефлекса у животных должны отсутствовать конкурирующие мотивации. Например, в случае выработки пищевого условного рефлекса у животного не должен быть переполнен мочевой пузырь или животное не должно подвергаться каким-либо повреждающим воздействиям.
8. Наконец, субъект, у которого вырабатываются условные рефлексы, должен быть здоров.
Механизмы образования временных:
Павлов связывал образование условных рефлексов главным образом с деятельностью коры большого мозга, хотя он не отрицал участия в этом процессе и ближайших подкорковых образований. Он рассматривал процесс образования условного рефлекса как взаимодействие двух дуг возбуждений: дуги условного и безусловного рефлексов. Между этими дугами, при повторных сочетаниях образуется временная связь.
Павлов обозначил ее «временной», так как при отсутствии подкрепления она быстро разрушается и условный рефлекс исчезает. Временная связь между условным раздражением и подкреплением формируется в коре большого мозга между пунктами (очагами) представительства условного сигнала и безусловного подкрепления. Образованию условнорефлекторной временной связи в коре большого мозга способствуют доминантные отношения. При этом корковый «очаг» безусловного подкрепления, будучи доминантным, притягивает к себе возбуждения, ранее вызванные условным раздражителем. Именно эти свойства способствуют образованию временной связи между пунктами условного и безусловного раздражений коры больших полушарий. Вследствие этого условный раздражитель начинает вызывать условнорефлекторный ответ.
Дополнительно к 36 и 37: Классификация условных рефлексов.
А).Все условные рефлексы подразделяются на те же группы, что и безусловные на базе которых они выработаны.
1)По биологическому значению различают следующие условные рефлексы: 1.Пищевые. 2.Оборонительные. 3. Половые. 4. Статокинетические. 5. Локомоторные. 6. Ориентировочные. 7. Поддерживающие гомеостаз и др.
2)По виду рецепторов на которые воздействует условный раздражитель различают: а) экстероцептивные, б) интероцептивные, в) проприоцептивные условные рефлексы
3 По характеру ответа и отделу ЦНС, обеспечивающего ответную реакцию условные рефлексы разделяют на: а) соматические/двигательные/ и б) вегетативные/сердечно-сосудистые и др./
Б).Условные рефлексы подразделяются по отношению сигнального /условного/ раздражителя к безусловному/подкрепляющему/ раздражителю.
Условные рефлексы делятся на натуральные и искусственные /лабораторные/.
1) натуральные условные рефлексы формируются на сигналы /условные раздражители/, которые являются естественными признаками подкрепляющего/безусловного раздражителя/, на пример, вид, вкус, запах (условные раздражители) пищи(безусловный раздражитель) при выработке натурального пищевого условного рефлекса.
2) искусственные условные рефлексы формируются на условные раздражители не имеющие прямого отношения к безусловному раздражителю(свет и пища)
Они подразделяются по:
1)сложности на: а) простые условные рефлексы, вырабатываемые на одиночные раздражители /классические условные рефлексы/, б) комплексные условные рефлексы, вырабатываемые на несколько сигналов действующих одновременно и/или последовательно, в) цепные рефлексы, вырабатываемые на цепь раздражителей каждый из которых вызывает условный рефлекс, г) инструментальный условный рефлекс, при выработке, а за тем реализации которого субъект обязательно совершает действие направленное на поиск/включение/ безусловного подкрепления.
2)соотношению времени действия условного и безусловного раздражителей делятся на: а)наличные и б)следовые.
-Наличные условные рефлексы
Условный раздражитель имеет сигнальное назначение и по этому при выработке условного рефлекса начинает свое действие раньше безусловного.
СТРОГО СОВПАДАЮЩИЙ. Безусловный раздражитель начинает действовать через 0,5-2"/сек/ после начала действия условного, а затем они вместе действуют 30-60 сек
ОТСТАВЛЕННЫЙ. Безусловный раздражитель начинает действовать через 5-30" после начала действия условного, а затем они вместе действуют 30-60 с. ЗАПАЗДЫВАЮЩИЙ. Безусловный раздражитель начинает действовать через 1,5-2 минуты после начала действия условного, а затем они вместе действуют 30-60 сек
-Следовые условные рефлексы. Безусловный раздражитель начинает действовать после завершения действия условного раздражителя/ интервал от 30 сек до нескольких минут/. Возбуждение от безусловного раздражителя совпадает со следовым возбуждением условного.
В)по выработке условного рефлекса на базе другого условного рефлекса. Различают условные рефлексы: 1 порядка –вырабатываются на базе безусловных рефлексов, 2 порядка – если в качестве условного раздражителя выступает условный рефлекс 1 порядка. У собаки – УР до 3 порядка включительно, у свиньи и ребенка – 6 порядка, у взрослого человека – 7 и 8 порядка, до 11 порядка.
Г) Условные рефлексы подразделяют в зависимости от сигнальных систем. Различают условные рефлексы а)на сигналы 1 сигнальной системы и б)на сигналы 2 сигнальной системы.
Условия выработки условных рефлексов
1. Наличие двух раздражителей (условного и безусловного). Условный раздражитель – любой "индифферентный раздражитель", не вызывающий оборонительной реакции, носит сигнальный характер.
2. По силе условные и безусловный раздражители должны быть ОПТИМАЛЬНЫЕМИ (не слабые, достаточно сильные, но и не сверхсильные)
3. Безусловный раздражитель должен быть сильнее условного.
4. Совпадение во времени действия (определенное время условный. и безусловный раздражители должны действовать вместе)
5. Начало действия условного раздражителя должно опережать начало действия безусловного раздражителя./сигнальный характер условного раздражителя/
6. Многократность сочетаний действия условного и безусловного раздражителей.
7. Бодрствующее состояние коры больших полушарий.
8. Не должно быть посторонних раздражителей. (Чтобы рефлекс выработался в чистом виде и появился быстро; "башня молчания").
9. наличие соответствующей доминирующей мотивации.
Периоды образования условного рефлекса
1.Скрытый период- после нескольких сочетанных предъявлений условного и безусловного раздражителей, предъявление только условного раздражителя условный ответ еще не возникает.
2. период неустойчивых условных рефлексов- когда не на каждое предъявление условного стимула возникает условный ответ, на некоторые предъявления условного раздражителя условная реакция отсутствует./еще недостаточно количество сочетанных предъявлений/.
3.период генерализации- условный рефлекс возникает и на сходные/похожие на условный/ раздражители.
4. период специализации- условный рефлекс возникает только на условный стимул, на который был выработан.
5. финальная стадия-появление условного рефлекса стабильной величины. Условный рефлекс считается выработанным тогда, когда безусловная реакция возникает на действие условного раздражения без подкрепления безусловным раздражителем., то есть доведена до автоматизма и становится стереотипной.
МЕХАНИЗМ ОБРАЗОВАНИЯ УСЛОВНОГО РЕФЛЕКСА
В основе выработки УСЛОВНОГО РЕФЛЕКСА лежит образование ВРЕМЕННОЙ СВЯЗИ /между центрами восприятия условного и безусловного раздражителя/.
По И.П. Павлову – такая связь между центрами восприятия условного и безусловного раздражителя замыкается в коре больших полушарий.
1. При первом сочетании – в коре – 2 очага возбуждения. Очаг возбуждения на безусловный раздражитель обладает свойством доминанты./т.к. сили безусловного раздражителя всегда больше чем условного/. Одно из свойств ДОМИНАНТЫ – способность стягивать на себя возбуждение из других возбужденных участков мозга, следовательно, сюда же стягивается и возбуждение, возникшее на действие условного раздражителя. Это – ЭФФЕКТ ПОСЛЕДЕЙСТВИЯ (длительная частичная деполяризация мембран).
2. При последующих повторных сочетаниях действия условного и безусловного раздражителей наблюдается ФЕНОМЕН ОБЛЕГЧЕНИЯ (возбуждение по этому пути будет проходить все легче и легче; на фоне и за счет феномена последействия снижается порог возбуждения).
3. После многократных повторений сочетания условного и безусловного раздражителей, предъявление только условного раздражителя/без безусловного/, в центре условного раздражения будет возникать возбуждение, которое пойдет только по выработанному пути от центра воспринимающего условный раздражитель к центру, который ответственен за формирование безусловного рефлекса и вызовет в нем возбуждение. Это явление называется – ФЕНОМЕН ПРОТОРЕНИЯ ПУТИ, который является заключительным этапом образовалания ВРЕМЕННОЙ СВЯЗИ. 1.Временная связь по Павлову замыкается в коре больших полушарий. 2.По Асратяну временная связь при формировании некоторых условных рефлексов может замыкаться через подкорку, но и без коры больших полушарий в этом случае условный рефлекс реализоваться не сможет. 3.По П.К. Анохину временная связь образуется за счет интегративной деятельности группы нейронов или даже одного нейрона.
ДИНАМИЧЕСКИЙ СТЕРЕОТИП В течении жизни – ряд комплексных реакций, которые человек выполняет автоматически (привычки, навыки), они образуются при выработке соответствующего динамического стереотипа это понятие в физиологию и медицину ввел Павлов. Динамический стереотип - комплекс взаимосвязанных условных и безусловных рефлексов, который вырабатывается в ответ на действие условных и безусловных раздражителей, действующих в определенной последовательности.
Качества динамического стереотипа:
1. Более устойчив, чем простой условный рефлекс., т.е. если динамический стереотип долго не подкреплять комплексом раздражителей, он будет сохраняться (На пример: - езда на велосипеде).
2. Обладает большой инертностью и косностью (сформировавшись, он очень трудно изменяется, поддается корректировке). С возрастом инертность динамического стериотипа увеличивается /человеку тяжело менять обстановку; почерк, походка у него не изменяются/.
3. Динамический стереотип может совершенствоваться, поэтому он и был назван «динамический» (игру на фортепиано можно улучшить и т.д.).
4. Хрупкость–легко разваливается. При воздействии различных факторов/изменение обстановки/ тот или иной рефлекс в этой цепи может быть заторможен, тогда вся комплексная реакция разрушается.
№37 Физиологическую основу условного рефлекса составляет процесс замыкания временной связи. Временная (условная) связь — это совокупность нейрофизиологических, биохимических и ультраструктурных изменений мозга, возникающих в процессе сочетания условного и безусловного раздражителей и формирующих определенные взаимоотношения между различными мозговыми образованиями. Механизм памяти фиксирует эти взаимоотношения, обеспечивая их удержание и воспроизведение. В зоне коркового представительства условного стимула и коркового (или подкоркового) представительства безусловного стимула формируются два очага возбуждения. Очаг возбуждения, вызванный безусловным стимулом внешней или внутренней среды организма, как более сильный (доминантный) притягивает к себе возбуждение из очага более слабого возбуждения, вызванного условным стимулом. После нескольких повторных предъявлений условного и безусловного раздражителей между этими двумя зонами «проторяется» устойчивый путь движения возбуждения: от очага, вызванного условным стимулом, к очагу, вызванному безусловным стимулом. В результате изолированное предъявление только условного стимула теперь приводит к реакции, вызываемой ранее безусловным стимулом. В качестве главных клеточных элементов центрального механизма образования условного рефлекса выступают вставочные и ассоциативные нейроны коры большого мозга. Корковый пункт условного раздражителя в принципе имеет такую же структуру, как корковое представительство безусловного рефлекса, так как условный раздражитель сам по себе вызывает соответствующую безусловно-рефлекторную реакцию, особенно, если в качестве условного раздражителя взять какой-нибудь механический, электрический или химический раздражитель. Поэтому при сочетании условного и безусловного раздражителей временная связь по существу замыкается между корковыми представительствами двух безусловных рефлексов, т.е. между нейронами корковых ветвей их рефлекторных дуг. Следовательно, процесс образования условного рефлекса можно рассматривать как корковый синтез двух (или нескольких) безусловных рефлексов. Такое представление о месте и характере замыкания временной связи подтверждается экспериментальными исследованиями Э.А. Асратяна. Если подобрать два безусловных раздражителя примерно одинаково физиологической силы, например, пищевой и оборонительный, а затем сочетать их строго попеременно (то в одной, то в обратной последовательности), то образуется условный рефлекс в необычной форме. Каждый из безусловных раздражителей будет вызывать как двигательную, так и секреторную реакцию. Электрокожное раздражение становится сигналом пищи, а пища - сигналом электрокожного раздражения. Следовательно‑ временные связи могут быть двусторонними. Физиологические механизмы замыкания временной связи. Образование временной связи, по Павлову, является результатом взаимодействия двух одновременно возбуждаемых пунктов коры. Наличие двух очагов возбуждения в коре закономерно вызовет движение процесса возбуждения от более слабого (вызванного индифферентным раздражителем) к более сильному ( вызванному безусловным раздражителем). Таким образом, в основе механизма замыкания временной связи Павлов усматривал явление типа проторения пути, суммационного рефлекса, доминанты.
Опыты Русинова показывают, что если действием постоянного тока на участок коры мозга вызвать в нем повышенную возбудимость, то он приобретает свойства доминантного и любое раздражение прежде всего вызывает теперь реакцию, связанную с возбуждением такого очага. Если это двигательный центр, то звук вызывает движение лапы. Искусственно созданный доминантный очаг сохраняется некоторое время и после выключения тока. Однако обычно доминантный очаг сохраняется сравнительно недолго, тогда как образовавшаяся временная связь является стойкой. Предполагают поэтому, что доминантный механизм играет роль лишь в первой стадии образования условного рефлекса, в процессе прокладывания временной связи, т.е. в образовании проходимости ранее бездействовавших синапсов вставочных нейронов. Упрочнение же временной связи осуществляется по другом механизму. Эти механизмы пока точно не изучены. Одни исследователи главным считают функциональную перестройку синапсов под влиянием повторных раздражений. Другие считают, что все дело в соответствующем изменении лабильности клеток коры в центрах рефлексов, третьи предполагают, что поддержание стойкого состояния постоянной проводимости импульсов в образовавшихся временных связях обусловлено движением импульсов по кольцевым системам коры.
Беритов и Ройтбак основными в процессе замыкания временной связи считали морфологические перестройки в ЦНС под влиянием сочетаний (утолщение нейрофибрилл, миэлинизация нервных пресинаптических волокон, появление новых синапсов и т.п.).
Клеточные механизмы замыкания временной связи. В основе механизмов формирования ассоциативной связи лежит принцип конвергентного замыкания. Идея о конвергенции гетерогенных стимулов как принципе установления условного рефлекса была выдвинута Дж. Экклзом (1968). Он предположил существование центра конвергенции, который не имеет определенной локализации. На нейронах, входящих в состав этого центра, встречаются условный и безусловный сигналы. При этом происходит формирование пространственно-временной структуры возбуждения, которая затем передается в нейроны нижеследующего уровня.
Сохранив принцип конвергенции стимулов гетерогенных модальностей как исходный механизм взаимодействия и интеграции, П.К. Анохин (1968, 1974) дополнил концепцию представление о том, что взаимодействие сигналов различных сенсорных и биологических модальностей происходит на одном нейроне (рис. 4). Особые свойства подкрепляющего фактора определяются специфическими химическими реакциями, которые он вызывает, и соответствующими молекулярными преобразованиями в пределах мембраны и цитоплазмы нейрона. Здесь происходит ассоциация эффектов условной и безусловной стимуляции с последующими выходами сложившейся интеграции на аксон в виде клеточного разряда. Данная теоретическая концепция является основой для проведения исследований механизмов формирования ассоциативного обучения на одном нейроне.
Микроэлектродные исследования показали, что формирование ассоциативных связей происходит на всех уровнях мозга млекопитающих. Исследованы нейроны коры, ретикулярной формации, лимбических структур, стриопаллидарной системы, гипоталамуса. Показано, что до 60% нейронов различных корковых и подкорковых структур мозга способны формировать условные ответы на ранее неэффективные стимулы.
Внутриклеточные механизмы ассоциативного обучения. Опыты с ассоциативным обучением изолированных нейронов показали, что около 15% из них обучаются в процессе предъявления сочетаний. и около 80% - демонстрировали феномен отсроченного обучения, когда реакция на условный сигнал появлялась не сразу, а через какое-то время. Независимо от вида ассоциируемых стимулов и от особенностей предъявления сочетаний, каждый конкретный нейрон всегда обучается по одному и тому же способу – или во время обучения, или отсроченно. Это качество является его индивидуальной характеристикой. В основе этого феномена лежат особенности внутриклеточных процессов, опосредующих ассоциативное обучение, и эти процессы различны по скорости их развития.
Эффективность входа в нейрон может меняться под влиянием разной степени эффективности последующих возбуждений, поступающих по другим входам в этот же нейрон. С этой точки зрения особый интерес представляют командные нейроны, рецептивное поле которых состоит из широкой пластичной зоны и узкой области высоко стабильных реакций. При повторении стимула на пластичную зону рецептивного поля реакция угасает. При нанесении стимула на зону стабильных реакций ответы нейрона устойчиво сохраняются. При комбинации раздражений малоэффективной зоны с раздражениями области эффекторных реакций ответы со слабо эффективной зоны усиливаются. В пределах одного нейрона неэффективный вход может стать эффективным при сочетании его возбуждения с возбуждением высокоэффективного входа. С этой точки зрения формирование временной связи возможно в отдельном нейроне.
№38 То обстоятельство, что УР мобильны, непостоянны, могут исчезать на протяжении жизни индивидуума, свидетельствует о том, что существуют механизмы их торможения.
Виды торможения УР.: 1.Безусловное торможение
а) внешнее торможение. Под внешним торможением понимают срочное подавление текущей условно-рефлекторной деятельности при действии посторонних для нее раздражителей, вызывающих ориентировочный или какой-нибудь другой безусловный рефлекс. Например, любой неожиданный посторонний раздражитель вызывает ориентировочный рефлекс и одновременно тормозит конкурирующие с ним текущие рефлексы. Однако, если раздражитель, первоначально вызывающий ориентировочный рефлекс, повторять многократно, то эффект его новизны утрачивается, в результате - будет тормозиться не текущий УР, а сам ориентировочный рефлекс (развивается реакция "привыкания").Таким образом, тормозящее действие постороннего раздражителя при его многократном повторении заметно ослабевает, потому такой раздражитель называется "гаснущим тормозом". Другой вид внешнего торможения отличается постоянством своего эффекта, и поэтому называется "постоянным тормозом". Примером "постоянного тормоза" служит безусловный оборонительный рефлекс, возникающий в ответ на действие болевого раздражителя. Оборонительный рефлекс тормозит любой вид условно-рефлекторной деятельности, и эффективность такого торможения не уменьшается при его многократном применении. Биологическое значение внешнего торможения заключается в том, что организм при необходимости переключается с одного вида рефлекторной деятельности на другой, если возникает более сильная доминанта.
б) Запредельное торможение. Опыты с применением достаточно сильных условных раздражителей показали, что, начиная с определенного порога интенсивности, соответствующий условный раздражитель не только не усиливал выработку УР, но, наоборот, тормозил уже выработанные УР. И.П.Павлов показал, что данный феномен является не результатом утомления, а - самостоятельным процессом - запредельным торможением. Павлов назвал запредельное торможение охранительным, т.е. оно ограждает клетки мозга от избыточного расходования энергетических и нейромедиаторных ресурсов. Запредельное торможение зависит от функционального состояния ЦНС, от темперамента индивидуума, состояния гормонального баланса и т.д. Сила раздражителя, вызывающая запредельное торможение, для каждого человека индивидуальна. Необходимо подчеркнуть, что запредельное торможение возникает под действием не только сверхсильных физических, но чаще - информационных раздражителей. Крайним случаем запредельного торможения является состояние оцепенения, ступора - полной неподвижности и ареактивности, которое может развиться под влиянием тяжелого эмоционального потрясения. Поскольку и внешнее, и запредельное торможение связаны с наследственными, врожденными свойствами ЦНС И.П.Павлов назвал эти виды торможения безусловным торможением.
2. Условное торможение.
а) Угасательное торможение возникает с случае, когда условный раздражитель перестает подкрепляться безусловным. Неподкрепляемый условный раздражитель с течением времени не только снижает проявления УР, но даже мог полностью подавлять выработанный УР. Таким образам, неподкрепляемый раздражитель становится самостоятельным тормозным сигналом. Угасательное торможение избавляет ЦНС от нецелесообразных в данном условии УР.
б) Дифференцировочное торможение развивается при неподкреплении раздражителей, близких по сенсорной модальности к подкрепляемому. Дифференцировка позволяет точно различать близкие по характеру раздражители и отвечать лишь на подкрепляемый. Данное торможение играет важную роль в процессах обучения, т.к. закрепляется лишь одна, очень точная реакция на определенный стимул.
в) Условный тормоз образуется при неподкреплении комбинации из подкрепляемого раздражителя и какого-либо индифферентного раздражителя. Например, свет подкрепляется пищей, и вызывает УР слюноотделения, а комбинация свет + звонок не подкрепляется пищей. С течением времени УР слюноотделения в ответ на действие данной комбинации раздражителей прекращается, хотя свет сам по себе по-прежнему вызывает УР. Интересно, что в дальнейшем звонок может стать самостоятельным тормозным фактором, способным подавлять и другие различные УР. Т.о., условный тормоз в какой-то степени становится аналогом слова " нельзя ", что способствует выработке навыков запрета.
г) Запаздывающее торможение. Возникает в том случае, когда подкрепление условного раздражителя постоянно все больше и больше отодвигается от подачи условного сигнала. УР в этом случае также начинает запаздывать. Первый период после действия условного раздражителя называется недеятельной фазой УР (реакция тормозится). По истечению определенного времени торможение УР прекращается и сменяется возбуждением: это - деятельная фаза УР. Адаптивное значение запаздывательного торможения состоит в тонком анализе времени раздражителя; условный рефлекс точно приурочивается ко времени действия подкрепления.
Подводя итог, можно заключить, что значение условного торможения для высшей нервной деятельности очень велико: оно позволяет избежать существования множества биологически нецелесообразных реакций в условиях изменяющейся окружающей среды, играет существенную роль в процессах обучения, способствует оптимальному, а не избыточному проявлению условных рефлексов, экономит силы организма.
№39 Аналитико-синтетическая деятельность коры больших полушарий
Множество раздражителей внешнего мира и внутренней среды организма воспринимаются рецепторами и становятся источниками импульсов, которые поступают в кору больших полушарий. Здесь они анализируются, различаются и синтезируются, соединяются, обобщаются. Способность коры разделять, вычленять и различать отдельные раздражения, дифференцировать их и есть проявление аналитической деятельности коры головного мозга.
Сначала раздражения анализируются в рецепторах, которые специализируются на световых, звуковых раздражителях и т. п. Высшие формы анализа осуществляются в коре больших полушарий. Аналитическая деятельность коры головного мозга неразрывно связана с ее синтетическойдеятельностью, выражающейся в объединении, обобщении возбуждения, которое возникает в различных ее участках под действием многочисленных раздражителей. В качестве примера синтетической деятельности коры больших полушарий можно привести образование временной связи, которое лежит в основе выработки условного рефлекса. Сложная синтетическая деятельность проявляется в образовании рефлексов второго, третьего и высших порядков. В основе обобщения лежит процесс иррадиации возбуждения.
Анализ и синтез связаны между собой, и в коре происходит сложная аналитико-синтетическая деятельность.
Динамический стереотип. Внешний мир действует на организм не единичными раздражителями, а обычно системой одновременных и последовательных раздражителей. Если система последовательных раздражителей часто повторяется, это ведет к образованию системности, или динамического стереотипа в деятельности коры головного мозга. Таким образом, динамический стереотип представляет собой последовательную цепь условно-рефлекторных актов, осуществляющихся в строго определенном, закрепленном во времени порядке и являющихся следствием сложной системной реакции организма на сложную систему положительных (подкрепляемых) и отрицательных (неподкрепляемых, или тормозных) условных раздражителей.
Выработка стереотипа – это пример сложной синтезирующей деятельности коры головного мозга. Стереотип трудно вырабатывается, но если он сформирован, то поддержание его не требует большого напряжения корковой деятельности, при этом многие действия становятся автоматическими. Динамический стереотип является основой образования привычек у человека, формирования определенной последовательности в трудовых операциях, приобретения умений и навыков. Примерами динамического стереотипа могут служить ходьба, бег, прыжки, катание на лыжах, игра на музыкальных инструментах, пользование при еде ложкой, вилкой, ножом, письмо и др.
Стереотипы сохраняются долгие годы и составляют основу человеческого поведения, при этом они очень трудно поддаются перепрограммированию.
Дополнительно: Аналитико-синтетическая функция коры
Анализ раздражения состоит в различении, разделении разных сигналов, дифференцировке различных воздействий на организм.
Синтез раздражений проявляется в связывании, обобщении возбуждений, возникающих в различных участках коры большого мозга.
Анализ и синтез неразрывно связаны между собой.
Формами аналитико-синтетической деятельности коры являются:
- условный рефлекс, динамический стереотип, доминанта, различные виды индукции и другие нерасшифрованные еще механизмы, обеспечивающие работу больших полушарий.
№40 Охарактеризуйте системную архитектонику целенаправленного поведенческого акта.
Центральная архитектоника поведенческого акта строится деятельностью головного мозга, являясь атрибутом сложных динамических корково-подкорковых взаимоотношений.
Первой, инициативной стадией центральной архитектоники поведенческого акта является стадия афферентного синтеза, которая состоит из нескольких компонентов.
Ведущим компонентом является доминирующая биологическая мотивация, которая строится на основе нервно-гуморальной сигнализации различными метаболическими потребностями.
Доминирующие биологические мотивации голода, страха, жажды, полового возбуждения и др. за счет восходящих активирующих влияний специальных гипоталамических центров избирательно охватывают различные отделы головного мозга, включая кору. Биологические мотивации могут самостоятельно сформировать поведенческий акт. При этом внешние факторы играют роль ключевых, раскрывающих в определенных условиях генетические механизмы поведенческих актов.
Влияния внешней среды составляют второй компонент афферентного синтеза — обстановочную афферентацию, которая непрерывно поступает в ЦНС при действии разнообразных факторов внешней среды на многочисленные экстерорецепторы живых организмов.
Соотношения доминирующей мотивации и обстановки динамичны, они строятся по принципу доминанты — в первую очередь удовлетворяются биологические или обстановочные воздействия, наиболее значимые для выживания или социальной адаптации.
Третьим компонентом афферентного синтеза является память. Прежде всего это генетическая память, к которой в построении поведения постоянно адресуются врожденные биологические мотивации. Механизмы памяти при определенных условиях могут самостоятельно сформировать поведенческий акт или существенно повлиять на его организацию.
Дополнительно: Центральная архитектоника целостного поведенческого акта с точки зрения теории функциональной системы П.К. Анохина.
Учение И.П Павлова о Высшей Нервной Деятельности явилось фундаментом, на основе которого стало возможно изучение поведенческого акта. Однако не всякий поведенческий акт можно объяснить с точки зрения рефлекторной теории И.П.Павлова. Так, не совсем понятно:1) Почему один и тот же раздражитель вызывает неодинаковую ответную реакцию (например, пища у голодной собаки - одну реакцию, а у сытой - совсем другую)./мотивация/
2) Почему мы на красный свет иногда (когда нет машин, а мы очень торопимся) переходим перекресток улиц./память/
В связи с этим П.К.Анохин и выдвинул понятие о функциональной системе.
Функциональная система поведенческого акта - это системная динамическая, саморегулирующаяся организация, развертывающаяся в определенной последовательности, имеющая специфические узловые механизмы, участвующие в построении и реализации сложного приспособительного поведения.
Стадии формирования функциональной системы поведенческого акта.
В центральной архитектонике функциональной системы условно выделяют несколько стадий:
1. Афферентный синтез
2. Принятие решения.
3. Формирование акцептора результата действия и программы действия.
4. Эфферентный синтез.
5. Целенаправленное действие.
6. Полезный приспособительный результат.
7. Обратная афферентация.
Краткая характеристика каждой из условно выделенных
стадий функциональной системы.
(Последовательное формирование отдельных стадий функциональной системы разберем на примере поведенческого акта с лужей, встретившейся на пути в институт, или в связи с поиском пищи!)
1. Афферентный синтез - (анализ и синтез афферентной информации) -формируется на основании синтеза - объединения нескольких факторов.
Он включает в себя:
- Доминирующая мотивация,
- обстановочную афферентацию /обстановочные раздражители,
- память
- пусковой раздражитель.
Доминирующая мотивация - выражает ту или иную потребность, являясь ее проявлением, мотивация определяет биологическую сущность поведения, его направленность и выраженность/интенсивность/
Обстановочная афферентация складывается из суммы обстановочных раздражителей – определяет форму и выраженность ответной реакции/ один на один, лекция/, находится в динамическом взаимодействии с доминирующей мотивацией/влияет на ее выраженность.
Роль памяти - проявляется в извлечении из нее наших знаний/врожденных, наследуемых и приобретенных, / о данном факте и варианты действия и прогноза, формы/способы/ достижения цели/ на основе имеющегося опыта, памяти/
Взаимодействие возбуждений созданных доминирующей мотивацией, обстановочной афферентацией, информацией извлеченной из памяти называется предпусковой интеграцией
Пусковой раздражитель - как бы вскрывает возникшую предпусковую интеграцию, запускает 2-ую стадию, определяет преобладание мотивации или обстановки, иерархию использования информации.
2. Принятие решения /постановка цели/ – является итогом афферентного синтеза, зависит от качества информации извлеченной из памяти, правильности восприятия информации от сенсорных систем/раздражители/, силы мотивационного возбуждения. Многие из решений мозга не вербализуются. Вызывает формирование 3 стадию, влияет/определяет/ ее содержание.
3. В 3-ю стадию функциональной системы в мозге формируются 2 аппарата:
- Акцептор результата действия - физиологический аппарат предвидения (прогноза), создает ожидаемый образ/эталон ожидания/, который зависит от качества афферентного синтеза. В акцепторе результата действия происходит сопоставление получаемых результатов действия с прогнозом.
- Аппарат действия с программой действия - в действие приводятся те нервные центры, возбуждение которых приводит к формированию поведенческого акта, то есть происходит программирование поведения с учетом мотивации, памяти, обстановки.
4. Эфферентный синтез - объединение и интеграция центральных регуляторных процессов, обеспечивающих поведенческий акт; определенная последовательность набора нервных и гуморальных команд, поступающих на исполнительные органы. Это - интеграция вегетативных и соматических реакций организма. За счет эфферентного синтеза объединяются различные компоненты поведенческого акта: двигательные и вегетативные.
5. Целенаправленное действие - Это - мультифункциональный процесс, направленный на реализацию программы поведения, проявляется двигательными и вегетативными реакциями, которые направлены на достижение цели, т.е. на удовлетворение определенной потребности,
6. Полезный приспособительный результат поведенческой деятельности - (ППРПД) является системообразующим фактором., результат действия имеет много параметров, он мультипараметричен.
7. Обратная афферентация –всегда многоканальная, служит для оценки достигнутого результата (по отдельным параметрам). В ее основе лежит сопоставление полученных результатов с акцептором результата действия/прогнозом/. Таким образом, обратная афферентация - замыкает разомкнутую рефлекторную дугу в как бы в «кольцо».
Таким образом, поведение строится не по типу: стимул - реакция, а по принципу : непрерывного кольцевого взаимодействия организма и среды. Любая деятельность начинается с создания плана и программы данной поведенческой реакции и нейронной модели ее будущего результата. При этом рефлекторная дуга не упраздняется. а она органически вписывается в кольцо, представляя его часть.
Функциональная система распадается, если результат действия совпадает с прогнозом (планом) действия, при этом возникают положительные эмоции. Если же они не совпадают, т.е. предполагаемая программа не выполнена, то возникают отрицательные стенические эмоции, но функциональная система не исчезает, т.к. возникает сигнал рассогласования, который идет в аппарат афферентного синтеза и на ее основе вносятся коррективы либо в программу действия/дополнительные механизмы / либо в прогноз/акцептор результатов действия/планка амбициозности (притязаний)
№41 Мотивация — вызванное той или иной потребностью эмоционально окрашенное состояние организма, избирательно объединяющее нервные элементы различных уровней мозга. На основе мотиваций формируется поведение, ведущее к удовлетворению исходной потребности. Основные влечения организма представляют собой именно такую форму поведенческой деятельности, которая в отличие от рефлекторной деятельности как реакции на внешние стимулы, напротив, направлена на поиск специальных раздражителей внешней среды. К числу основных влечений, направленных на обладание определенными раздражающими предметами относятся, в первую очередь, влечение голода и ориентировочно – исследовательская деятельность.
Различают биологические и социальные мотивации:
Биологические мотивации, они же основные влечения, или низшие, простые, первичные мотивации. Биологические мотивации направлены на удовлетворение ведущих биологических потребностей индивидуумов по сохранению их вида или рода. К ним относятся мотивации голода, жажды, страха, агрессии, половые влечения, различные родительские, в частности материнские, температурные и другие влечения. Ведущими биологическими потребностями являются: 1) пищевая потребность, характеризующаяся уменьшением в организме уровня питательных веществ; 2) питьевая потребность, связанная с повышением осмотического давления; 3) температурная потребность — при изменении температуры тела; 4) половая потребность.
Всегда имеется ведущий параметр общей метаболической потребности — доминирующая потребность, наиболее важная для выживания особи или ее рода, которая строит поведенческий акт, направленный на ее удовлетворение.
Социальные мотивации, они же высшие, или вторичные, строятся на основе врожденных биологических мотиваций путем общения индивидуумов со средой обитания, родителями и окружающими их живыми существами, а у человека — и с социальной средой. В формировании социальных мотиваций значительное место принадлежит воздействию различных факторов внешней среды, обучению и, следовательно, механизмам памяти. К социальным мотивациям относят, например, стремление получать ту или иную профессию, добиться признания, успеха, справедливости, заработать много денег и т.д. У человека социальные мотивации очень часто оказываются сильнее биологических; порой даже вступают с ними в борьбу (например люди даже готовы жертвовать своей жизнью во имя различных идей и т.д.)
Мотивации как биологического, так и социального плана в целостной деятельности организма всегда являются компонентом системной архитектоники поведенческого акта. Мотивации играют существенную роль в организации таких ответственных системных механизмов, как стадия афферентного синтеза, принятия решения и предвидения потребного результата — акцептора результата действия. Не меньшее значение мотивация имеет в формировании эфферентной программы поведения — стадии эфферентного синтеза. Мотивации в своем становлении в развивающемся организме подлежат общим закономерностям развития функциональных систем — процессам системогенеза. В процессе онтогенетического развития отдельных функциональных систем мотивации, будучи их составным компонентом, созревают избирательно и последовательно.
Физиологические механизмы биологических мотиваций:
Биологические мотивации, будучи тесно связанными с метаболическими потребностями организма, строятся на основе врожденных, генетически детерминированных механизмов. Причиной биологических мотиваций являются раздражители внутренней среды, связанные с изменением различных показателей гомеостаза, определяющих нормальное течение обменных процессов в организме, например уровня питательных веществ, осмотического давления, состояния половых клеток, различных гормонов. Биологические мотивации могут активироваться или тормозиться специальными внешними «освобождающими» факторами внешней среды, например видом или запахом противника или полового партнера, пищи или других удовлетворяющих различные потребности раздражителей. Биологические мотивации нередко относятся к разряду сложных безусловных рефлексов, или инстинктов.
Дополнительно: Источником активности животного и человека являются потребности. Мотивы — это побуждения к деятельности, связанные с удовлетворением определенных потребностей.
Мотивации делят на три основные группы:
• биологические мотивации, которые свойственны человеку и животным;
• социальные мотивации, свойственные человеку и частично животным;
• духовные (идеальные), свойственные только человеку.
Основной причиной возникновения биологических мотиваций является отклонение основных констант внутренней среды организма-, т. е. биологические мотивации формируются на основе биологических потребностей — голода, жажды, полового чувства и др. Так, например, формируется мотивация голода. При снижении в крови уровня питательных веществ, возбуждаются глюкорецепторы, информация от которых поступает в латеральные ядра гипоталамуса, в которых локализуется подкорковый центр голода. Эти ядра могут раздражаться и непосредственно “голодной кровью” (кровь, в которой снижено содержание питательных веществ). Возбуждение от ядер гипоталамуса передается в кору головного мозга — возникает субъективное чувство голода. Это мотивационное возбуждение постепенно захватывает все большие и большие участки коры, т. е. в активное состояние приходят большие территории мозга, что обеспечивает формирование деятельности организма на удовлетворение возникшей мотивации.
Социальные мотивации свойственны человеку и отчасти животным, у которых сложные виды деятельности связаны с системой мотиваций действий и поступков в социальной среде, сообществе. Эмоциональные проявления познавательных потребностей человека называются интересами, они характеризуются положительными эмоциональными состояниями и различаются по содержанию, цели, широте и устойчивости.
Духовные (идеальные) мотивации свойственны только человеку и связаны с потребностями, возникающими в интеллектуальной сфере: потребность творчества, просветительской деятельности и др.
Дополнительно: Мотивация /побуждение, влечение/ –это форма проявления потребности, которая возникает при необходимости удовлетворения данной потребности, Побуждение к целенаправленной деятельности, направленной на удовлетворение потребностей
Это состояние характеризуется избирательным возбуждением мозговых структур, Каждая мотивация субъективно переживается, т.е. сопровождается специфической, эмоциональной реакцией. Субъективные переживания, сопровождающие мотивацию, имеют важный информационный смысл и позволяют быстро и надежно определить биологическую и социальную целесообразность удовлетворения той или иной потребности, а так же являются мощным стимулом/при целесообразности/ для формирования целенаправленной деятельности. Целенаправленная деятельность проявляется как в простых реакциях/рефлексы/, так и в более сложных/инстинкты/, является стержнем поведенческих реакций, обеспечивающих удовлетворение мотивации.
Классификация мотиваций: каждая потребность проявляется в своей мотивации, выделяют:
1. Биологические мотивации.
2. Социальные мотивации.
У человека все биологические мотивации социализированы.
Иерархия мотиваций. 1.Оборонительные, 2.пищевые, 3.половые и т.д.Ситуационно мотивации делятся:
1. ДОМИНАНТНЫЕ и 2. НЕДОМИНАНТНЫЕ.
Если есть несколько мотиваций, то реализуется только одна из них – та, которая доминирует, т.е. имеет большую силу возбуждения.
При гомеостатических метаболических мотивациях /голод, жажда/ мотивационное возбуждение первично формируется в гипоталамусе. На уровне гипоталямуса хорошая проницаемость ГЭБ, хорошо развита чувствительность к "хим. вешествам", рецепторы гипоталямуса постоянно воспринимают изменение химических показателей внутренней среды организма – это формирует мотивационное возбуждение в гипоталамусе. Оно выполняет роль пейсмекера- активирует и объединяет в единый ансамбль другие /необходимые/ структуры мозга. Это формирует поисковую реакцию, активирует процесс мобилизации информации из памяти, определяет пути поиска для удовлетворения мотивации. У гипоталамуса особая стратегическая роль в регуляции функций – с одной стороны он связан со всеми отделами мозга (в то числе и с корой), с другой- с гормональной сферой- через релизинг-факторы, это позволяет реализовать мотивационное возбуждение через корригирующие нервные и гуморальные влияния. Мотивационное возбуждение параллельно вызывает формирование прогностического аппарата мозга. Удовлетворение потребности возникает за счет исчезновения мотивационного возбуждения, что происходит при реализации целенаправленного поведения и достижении цели.
Удовлетворение потребности может быть ПОЛНЫМ и НЕПОЛНЫМ и от этого зависит дальнейшая судьба мотивационного возбуждения. Механизмы других мотиваций изучены пока крайне недостаточно.
Каким образом формируется та или иная мотивация! Существует ряд теорий, объясняющих возникновение мотиваций и формирование соответствующего поведения. 1.Периферическая теория. Автором ее обычно считают Кеннона, хотя еще Декарт, а вслед за ним и Сеченов полагали, что в основе мотиваций лежит стремление особи избежать неприятных физиологических и эмоциональных ощущений и достичь и удержать приятное чувственное ощущение. Например, при пустом желудке возникают весьма неприятные ощущения "под ложечкой", и поэтому, согласно данной теории, человек или животное прекратить и наполненного желудка, что и определяет его поведение. Эта теория содержит определенное рациональное зерно, однако не объясняет сам механизм возникновения мотивации. 2. Дальнейшие поиски привели к созданию другой группы теорий, в которых основное внимание уделялось _ гуморальным факторам . в возникновении мотиваций. Так, голод связывался с составом т.н. "голодной" крови, жажда - с повышением осмотического давления крови, половое влечение ставилось в прямую зависимость от уровня половых гормонов. Несомненно, роль гуморальных факторов в возникновении мотиваций очень важна, однако гуморальные факторы, как выяснилось, на способны самостоятельно вызвать ту или иную мотивацию. Наблюдения Т.Алексеевой над сиамскими близнецами, у которых были раздельные головы и начальные отделы ЖКТ и общая система кровообращения помогли уточнить роль гуморальных факторов в возникновении мотивации голода. Оказалось, что кормление одной из девочек, а значит, и равномерное распределение питательных веществ в кровеносной системе обоих близнецов, никогда не приводило к насыщению другой. Напротив, у второй девочки длительное время могла поддерживаться потребность в пище. По-видимому, как возникновение, так и удовлетворение мотивации имеет множественный генез, зависящий как от нервных, так и от гуморальных факторов, влияющих на различные структуры ЦНС. 3. Поиски структур мозга, ответственных за возникновение мотиваций, привели к созданию гипоталамической теории. мотиваций Стеллара, который полагал, что гипоталамус является сосредоточением "центрального мотивационного состояния". Выводы Стеллара основывались на следующих фактах. Во-первых, в гипоталамусе обнаружены нейроны, избирательно реагирующие на осмотическое давление крови, содержание глюкозы и др.веществ в крови, уровень различных гормонов и т.д. Во-вторых, раздражение определенных ядер гипоталамуса вызывало формирование той или иной мотивации, даже если реальной потребности организм в данный момент не испытывал. Например, у сытого животного раздражение центра голода (латеральных ядер гипоталамуса) приводило к избыточному потреблению пищи, раздражение супраоптического ядра приводило к потреблению воды сверх физиологической потребности и т.д. В-третьих, разрушение соответствующих структур гипоталамуса полностью прекращало возникновение той или иной мотивации, например, разрушение центра голода, приводило к отказу от пищи даже у истощенных животных. Все приведенные факты свидетельствуют, что гипоталамус является важнейшим центром, который ,с одной стороны, контролирует состояние внутренней среды организма, и с другой стороны - формирует жизненно важные мотивации. Однако гипоталамические структуры не могут рассматриваться как единственные в ЦНС, ответственные за возникновение мотиваций. Важная роль в этом процессе принадлежит ЛС и КБП. В формировании социальных мотиваций, по-видимому, ведущая роль принадлежит коре и структурам ЛС. 4. Пейсмекерная теория. мотиваций Анохина в определенной мере объединила данные всех предшествующих теорий. Анохин полагал, что любая мотивация обусловлена соответствующей потребностью и носит системный характер. Потребность трансформируется посредством нервных и гуморальных факторов в возбуждение гипоталамических центров (пейсмекеров),которые, в свою очередь, активируют другие структуры мозга -РФ, ЛС, и КБП.ЛС формирует эмоциональную оценку ситуации, когда соответствующая потребность не удовлетворена: в КБП происходит осознание этой потребности, учет различных обстоятельств реальной обстановки. В зависимости от факторов окружающей среды кора может как тормозить, так и дополнительно возбуждать гипоталамические центры мотиваций. Таким образом, на уровне коры формируется конкретная программа целенаправленной деятельности для удовлетворения соответствующей потребности.
№42 Память — способность живых существ запоминать, сохранять и воспроизводить информацию о ранее воздействовавших на них событиях. Память тесно связана с обучением. С точки зрения системной организации физиологических функций, память присуща всем компонентам системной архитектоники поведенческого акта — стадии афферентного синтеза, принятия решения, акцептора результата действия и эфферентного синтеза.
Виды памяти. Выделяют три вида памяти: кратковременную, промежуточную и долговременную.
Кратковременная память определяет значимость поступающей информации для организма. Если эта информация важна для организма, особенно для удовлетворения его ведущих потребностей, она затем обрабатывается в промежуточной памяти и переходит в долговременную память. В противном случае она быстро забывается.
Промежуточная память определяет сохранение полученной организмом информации в течение нескольких минут или часов. Такая память определяет, например, формирование мыслей при разговоре, запоминание адресов, телефонных разговоров, некоторых заданий (так называемая рабочая память).
Долговременная память сохраняется всю жизнь. Важные для субъекта, особенно эмоционально окрашенные события, запечатляются в долговременной памяти достаточно ярко.
Особую форму представляет эмоциональная память — запечатление ярких положительных и отрицательных эмоциональных переживаний.
Процесс памяти включает 4 стадии:
- восприятие, запечатление, запоминание информации;
- хранение информации;
- воспроизведение необходимой информации;
- забывание.
Кратковременная память формируется на основе непосредственно сенсорного отпечатка внешнего мира. При этом в памяти уже удерживается ограниченная, выделенная доминирующей мотивацией информация о внешней среде, способствующая удовлетворению ведущей потребности организма. Кратковременная память позволяет в течение нескольких секунд или минут удерживать и воспроизводить отобранную часть информации.
Процессы последующей за кратковременной промежуточной памяти обычно разыгрываются в течение нескольких часов после обучения. В этот период времени экстремальные механические и химические воздействия способны стереть память, но по истечении 4 ч следы кратковременной памяти становятся устойчивыми. Происходит консолидация памяти.
Кратковременная память нарушается при таких воздействиях на организм, как электрошок, сильные мозговые травмы, судороги, наркоз, гипоксия. При этом наблюдается ретроградная амнезия — потеря памяти на события, предшествовавшие воздействию. Установлено, что объем кратковременной памяти человека составляет 7±2 единицы, т.е. бессмысленные слова после однократного их применения воспроизводятся испытуемыми лишь в эквивалентном количестве.
В основе современных представлений о механизмах кратковременной памяти лежит несколько гипотез: корково – подкорковая реверберация возбуждений, синаптическая теория.
Долговременная память определяет сохранение ранее полученной информации в течение длительного времени. Процессы фиксации следов в долговременной памяти осуществляются лучше при повторных воздействиях, особенно биологически значимых раздражителей. Наиболее быстро процесс консолидации памяти происходит при действии эмоционально значимых раздражителей. Долговременная память по своему механизму качественно отличается от кратковременной памяти и не нарушается при таких экстремальных воздействиях на мозг, как механическая травма, электрошок, наркоз и др.
Механизм долговременной памяти окончательно не установлен. Несколько теорий с разных позиций объясняют механизмы долговременной памяти: морфологические теории, глиальная теория, медиаторная теория, молекулярные теории.
Дополнительно: ПАМЯТЬ – это свойство ЦНС воспринимать, фиксировать, сохранять и воспроизводить полученную информацию
А Наследуемая /генетическая/, врожденная память
1.Инстинкты 2..Безусловные рефлексы
3. Другие наследуемые процессы
Б Ненаследуемая /индивидуальная/ приобретенная, приобретенная память можно разделить по времени формирования:
Мгновенная /иконическая/(сенсорная)
Краткосрочная (оперативная)
Долгосрочная (долговременная)
МГНОВЕННАЯ /иконическая, сенсорная) – объем ее большой, срок хранения информации до 0,10-0,50 секунд, формируемый образ сенсорного происхождения, представлен во всем информационном многообразии, невозможно воспроизвести.
КРАТКОВРЕМЕННАЯ /оперативная, нейрофизиологическая/- формируется непосредственно на основе сенсорного образа, длительность 5- 60 секунд, объем до 7 элементов одновременно, удерживает основные признаки образа
ДОЛГОСРОЧНАЯ /структурная память/– этот вид памяти выделяют для сохранения наиболее нужной и яркой информации, такая информация может сохраняться даже в течение всей жизни. Объем огромный, все что удерживается в памяти более 1 минуты в том или ином виде переходит в долговременную память.
Ненаследуемая память может быть разделена на:
ЭМОЦИОНАЛЬНАЯ ПАМЯТЬ – это память на пережитые чувства и эмоции.
ДВИГАТЕЛЬНАЯ ПАМЯТЬ – это память на различные движения.
ОБРАЗНАЯ ПАМЯТЬ – человек в этом случае запоминает целые образы.
По вводу информации ненаследуемая память делят на :
1.ОСЯЗАТЕЛЬНУЮ. 2.ОБОНЯТЕЛЬНУЮ.
3.СЛУХОВУЮ. 4.ЗРИТЕЛЬНУЮ
У человека обычно преобладает какой-то один вид памяти, но есть категория людей, которые в одинаковой мере обладают слуховой и зрительной памятью. У человека, в принципе, больше всего развита зрительная и слуховая память. В педагогике существует мнение о том, что слуховая память должна подкрепляться зрительной памятью.
Процессы памяти включают 4 стадии
1.Восприятие, запечатление, запоминание.
2. Хранение информации.
3. Воспроизведение информации.
4. Забывание.