Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_fize.rtf
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.24 Mб
Скачать

Раздел III. Методы исследования физиологических

ФУНКЦИЙ.

ФИЗИОЛОГИЯ И БИОФИЗИКА ВОЗБУДИМЫХ ТКАНЕЙ

1. Методы изучения возбудимости нервов и мышц.

2. Хронаксиметрия.

3. Экспериментальные методы исследования биоэлектрических явлений. Опыты Гальвани.

4. Электромиография.

5. Определение силы мышечного сокращения. Динамометрия.

6. Определение локализации утомления в нервно-мышечном препарате.

КРОВЬ.

7. Методы подсчета эритроцитов и лейкоцитов.

8. Исследование осмотической стойкости эритроцитов.

9. Методы определения количества гемоглобина в крови.

10. Методы определения группы крови.

11. Определение гематокрита.

12. Определение цветового показателя крови.

13. Определение скорости оседания эритроцитов (СОЭ).

14. Методы определения скорости свертывания крови.

КРОВООБРАЩЕНИЕ.

15. Исследование изменения возбудимости сердечной мышцы в различные фазы сердечного цикла.

16. Электрокардиография. Векторкардиография.

17. Принципы анализа электрокардиограммы.

18. Методы определения систолического и минутного объемов крови.

19. Аускультация и фонокардиография.

20. Анализ проведения возбуждения по сердцу. Опыт Станниуса.

21. Анализ кривой артериального кровяного давления, записанной в остром опыте (К.Людвиг).

22. Бескровный метод определения кровяного давления (С.Рива-Роччи, И.С.Короткова). Артериальная осциллография.

23. Методы определения времени полного кругооборота крови.

24. Запись артериального и венного пульса. Анализ сфигмограммы и флебограммы.

ДЫХАНИЕ.

25. Определение давления в плевральной полости.

26. Определение минутной вентиляции легких в различных условиях.

27. Методы определения жизненной емкости легких. Спирометрия, спирография. Пневмография, пневмотахометрия.

28. Определение и сопоставление газового состава вдыхаемого и выдыхаемого альвеолярного воздуха.

29. Оксигемометрия и оксигемография.

ПИЩЕВАРЕНИЕ.

30. Методы изучения слюноотделения у животных (И.П.Павлов, Д.Д.Глинский). Методы изучения деятельности слюнных желез у человека. Мастикоциография.

31. Хронические методы изучения секреторной функции желудочных желез у животных.

32. Методы изучения секреторной функции желудка у человека.

33. Методы получения панкреатического сока у животных.

34. Методы изучения секреторной функции 12-перстной кишки у человека.

35. Методы изучения желчевыделения.

36. Методы исследования двигательной функции желудочно-кишечного тракта у животных и человека. Электрогастрография.

37. Использование радиоизотопных методов при изучении процессов гидролиза и всасывания питательных веществ.

ОБМЕН ВЕЩЕСТВ.

38. Методы определения расхода энергии. Прямая и непрямая калориметрия.

39. Камерные (закрытые) методы определения энергетических затрат (Н.М.Шатерников).

40. Определение дыхательного коэффициента, его значение для расчёта расхода энергии.

41. Определение основного обмена.

42. Нормы питательных веществ в суточном рационе.

ТЕРМОРЕГУЛЯЦИЯ.

43. Термометрия различных отделов поверхности тела и внутренних органов.

ВЫДЕЛЕНИЕ.

44. Методы исследования функций почки.

ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ.

45. Методы изучения желез внутренней секреции.

ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА.

46. Методы изучения функций ЦНС.

47. Методические приемы, применяемые для анализа структурной организации рефлекторной деятельности.

48. Способы определения времени рефлекса.

49. Опыт И.М.Сеченова (центральное торможение).

50. Стереотаксический метод и его значение для изучения функций ЦНС.

51. Электроэнцефалография и анализ ЭЭГ.

52. Метод регистрации вызванных потенциалов в коре полушарий большого мозга.

53. Микроэлектродный метод регистрации активности одиночных нейронов коры, подкорковых образований.

АНАЛИЗАТОРЫ.

54. Методы изучения функций зрительного анализатора (поле и острота зрения)

55. Методы исследования слухового анализатора. Речевая и тональная аудиометрия.

56. Методы исследования вкусового анализатора. Определение порогов вкусового раздражения. Функциональная мобильность вкусовых рецепторов.

57. Методы исследования тактильного анализатора.

ВЫСШАЯ НЕРВНАЯ ДЕЯТЕЛЬНОСТЬ.

58. Изучение ВНД методом условных рефлексов (И.П.Павлов).

59. Методы изучения функций коры головного мозга.

60. Методы различных видов внутреннего торможения.

61. Методы определения типов ВНД.

62. Динамический стереотип как метод изучения аналитико-синтетической деятельности мозга.

63. Физиологические методы исследования психических функций.

1. Физиология как наука…

Физиология - это наука о жизнедеятельности человеческого организма, о деятельности его отдельных органов и систем органов.

Физиология изучает функции и процессы, протекающие в организме, отдельных органах и системах органов, механизмы их формирования, реализации и регуляции.

Под функциями понимают проявление специфической деятельности органа, системы органов или организма в целом.

Физиология изучает процессы – т.е. динамику явлений, состояний во времени и пространстве.

Физиология относится к разряду фундаментальных наук. А это значит, что физиология изучает законы жизнедеятельности. Это значит, что она изучает наиболее важные взаимосвязи в живой материи.

Она является базой для целой группы биологических прикладных наук, а именно - патологической физиологии, фармакологии.

Физиологию определяют как теоретическую основу медицины.

Во-первых, это обусловлено тем, что физиология изучает процессы нормальной жизнедеятельности.

Предметом интереса медицины являются болезни - больной человек и болезни. Чтобы понять отклонение, надо понимать нормальное течение процессов.

Во-вторых, физиология дает нормы для медицины, т.е. параметры нормальной деятельности органов и систем органов.

В-третьих, физиология дает методы оценки функций, т.е. она дает медицине практические методы диагностики.

Для нормальной жизнедеятельности необходимо выполнение трех условий:

1-ое условие нормальной жизнедеятельности - постоянство внутренней среды.

2-ое - постоянный обмен внутренней среды организма веществом, энергией и информацией со средой окружения, внешней средой.

Из биофизики известно - человеческий организм - открытая система.

Следовательно, ОБМЕН ИДЕТ В ОБЕ СТОРОНЫ: и туда и обратно.

Значение обмена веществ.

Если, например, прекратить поступление в организм пищи /обмен веществом/ - человек расстанется с жизнью через 20 дней, а не потребляя воду - на 8-ой день. То же самое будет при задержке в организме метаболитов. Природные эксперименты - нефрит, повреждение почек, острая почечная недостаточность - уремия - накопление азотистых шлаков.

Значение обмена энергии.

С пищей в организм поступают не только питательные вещества, но и вещества, обеспечивающие организм энергией, В питательных веществах аккумулирована энергия Солнца /фотосинтез/, которая нам необходима для обеспечения жизнедеятельности,

Несколько слов об обмене информацией.

Имеет такое же значение, как и обмен веществ и энергии. Особую роль эта проблема приобрела с развитием космонавтики, подводных работ и т.д. Так, акад. Газенко открыл спец. НИИ около аэропорта Шереметьево - там есть спец. камеры, изолирующие человека от окружающей среды. Однако, при полном жизнеобеспечении в них нет ни радио, ни телевидения, ни прочей поступающей извне информации. При выходе из такой камеры у человека могут наблюдаться психические отклонения.

На этом основаны эксперименты с камерами, куда помещали человека с логореей (патологическое желание побеседовать с кем-либо), откуда человек выходит больным.

3-ий принцип жизнедеятельности, нарушение которого несовместимо с жизнью -

Адекватное приспособление организма к изменяющимся условиям внешней среды или среды обитания.

Условия среды, в которых обитает человек, постоянно изменяются. Окружающая среда у человека изменяется намного интенсивнее, чем у животных, т.к. человек - существо биосоциальное и, кроме физических факторов, которые на него воздействуют (климатических и др.), у человека есть проблемы общения с ему подобными, и это тоже требует постоянного приспособления.

Кроме того, человек должен приспосабливаться к техногенной среде (в отличие от животных), т.е. к среде, которую он сам создал.

Человек должен не просто приспосабливаться, а приспосабливаться адекватно, биологически разумно, к изменяющимся условиям окружающей среды.

Если он приспосабливается не адекватно, то это тоже несовместимо с жизнью.

2 Этапы развития физиологии

Год становления физиологии - 1628 г. - вышла книга английского анатома и физиолога У. Гарвея "Учение о движении сердца и крови в организме" - впервые описан большой круг кровообращения.

Периоды физиологии:

допавловский - 1628-1883 г.; 

павловский - с 1883 г. - диссертация И. Павлова "Центробежные нервы сердца". 

Павловский этап базируется на трех основных принципах - организм - это единая система, которая объединяет: различные органы в их сложном взаимодействии между собой, 

организм - единое целое с окружающей средой; принцип нервизма.

№3Этапы развития развития физиологии. Аналитический и системный поход к изучению функций организма. Метод острого и хронического эксперимента.

В развитии физиологии условно выделяют два этапа:

до научный (до 1628 года);

научный (после 1628 года).

Донаучный этап развития физиологии. Представителями до научного этапа можно считать известных ученых древности Гиппократа, Авицену, Галена, Парацельса и многих других. Гиппократ и Гален, например, разработали представления о типах поведения человека (представления о холериках, сангвиниках, меланхоликах и флегматиках). Авицена разработал ряд оригинальных представлений об индивидуальном здоровье и способах его укрепления.

Научный этап развития физиологии.Датой начала научного этапа физиологии считают дату выхода в свет труда известного английского врача и физиолога Уильяма Гарвея «Анатомические исследования о движении сердца и крови у животных» (1628). В данной работе впервые У.Гарвей сформулировал представления о движении крови у животных по большому кругу кровообращения. При этом все данные были получены экспериментально с использованием нового для того времени метода-метода вивисекции (буквально термин вивисекция означает живосечение).

Важной вехой в развитии физиологии можно считать работы известного французского ученого Рене Декарта (1596-1650), который впервые сформулировал представления об отражательном механизме, который впоследствии был назван чешским ученым И.Прохазкой (1749-1820) рефлексом.

1.Острый опыт (вивисекция)– метод однократного использования животных в операции под наркозом, без соблюдения правил асептики и антисептики. Цель— получить временный доступ к внутренним органам, а затем воздействовать на них (электрическое раздражение нервов или мышц, перевязка сосудов, применение фармакологических препаратов целевого назначения, изоляция органов и т. п.). Эффект при необходимости регистрируется.

2.Хронический (длительный) опыт – метод использования животных многократно после проведенной операции с соблюдением правил асептики и антисептики. Цель - наложение фистул на желудок или кишечник, выведение наружу протоков пищеварительных желез или мочеточников, вживление электродов для раздражения органа или отведения биопотенциалов, удаление отдельных органов или их частей (например, щитовидной железы, участков головного мозга), наложение катетеров на сосуды внутренних органов для регулярного получения проб крови и др.

Аналитическая физиология рассматривала отдельные органы и их функции – способ организации деятельности этих органов, функциональное их значение в жизни организма.

Объединяя, интегрируя все добытые биологические знания, физиология обеспечивала системный подход к изучению жизнедеятельности организма, рассматривая его как сложную, целостную и динамическую систему, активно взаимодействующую с окружающей средой.

4 Роль физиологии в материалистическом понимании сущности жизни. Значение работ И.М.Сеченова и И.П.Павлова в создании материалистических основ физиологии.

Физиология – термин происходит от греческих слов physis – природа и logos – учение, наука, т.е. в широком смысле физиология – это наука о природе. В более узком смысле физиология – наука о функциях организма животных и человека. Термин функция произошел от греческогоfunctio – деятельность. Функция – проявление жизнедеятельности организма в целом, отдельных его систем, органов и тканей, обеспечивающее приспособление к изменяющимся условиям окружающей среды, либо приспосабливающее окружающую среду к потребностям организма в целях наиболее оптимального приспособления.

Работы И.М.Сеченова совершили прорыв в объяснении механизмов целенаправленного поведения человека, создали базу для научного объяснения психических явлений. В 1863 году вышла его работа под названием «Рефлексы головного мозга», в которой Иван Михайлович впервые, основываясь на рефлекторных позициях, попытался объяснить механизмы высших психических функций.

Одним из выдающихся представителей мировой физиологии являлся академик И.П.Павлов. За исследования в области физиологии пищеварения в 1904 ему была присуждена первая Нобелевская премия в области физиологии. Кроме того, И.П.Павлов является автором учения об условных рефлексах, учения о высшей нервной деятельности животных и человека.

6 см выше

7 Защиту осуществляют две системы: неспецифическая (сопротивляемость организма) и специфическая (иммунная система).

НЕСПЕЦИФИЧЕСКАЯ ЗАЩИТА ОРГАНИЗМА

Линии защиты. Сопротивляемость организма складывается из двух линий защиты. Поверхностные анатомические барьеры (эпителий кожи и слизистых оболочек), находящиеся на границе внутренней и внешней среды, - первая линия неспецифической защиты. Физико-химические и биологические свойства эпителия, а также выделяемые на поверхность эпителия секреторные вещества и клетки не позволяют патогенам попасть во внутреннюю среду организма. Если же патоген преодолевает этот поверхностный барьер и оказывается во внутренней среде организма, его встречает комплекс клеточных и гуморальных неспецифических факторов. Это вторая линия неспецифической защиты, к которой относятся фагоцитирующие клетки, комплемент, интерфероны, кинины и некоторые другие вещества, а также естественные антитела (антигеннезависимые) и естественные киллеры. В совокупности обе линии защиты составляют врождённые, естественно присущие организму, т.е. конституциональные факторы.

ИММУННАЯ ЗАЩИТА

Специфическую (иммунную) защиту осуществляет иммунная система организма. Иммунная система развилась в качестве защиты против микробных инфекций и обеспечивает две формы иммунитета - специфическую и неспецифическую.Специфический иммунный ответ защищает организм от конкретного возбудителя и вступает в действие тогда, когданеспецифическая защита организма исчерпывает свои возможности.

Неспецифическая защита организма является врождённой. Она включает поверхностные анатомические барьеры (эпителий кожи и слизистых оболочек) и комплекс клеточных и гуморальных факторов внутренней среды.

В иммунную систему входят главные иммунологические органы: тимус, селезенка, костный мозг и лимфатическая система. Кроме того, она включает клетки и неклеточные элементы, входящие в состав каждой ткани организма.

Целью иммунной системы является различение между собственными и чужеродными молекулами внутри нашего организма, толерантность к нормальным веществам собственного организма и ликвидация любой проникшей в организм чужеродной субстанции.

Для борьбы с чужеродными субстанциями используются системы врождённого и приобретённого (адаптивного) иммунитета. Система врождённого иммунитета отвечает немедленно на общие иммуногены, система приобретённого иммунитета, которая изменяется в течение жизни и имеет память, отвечает на повторную встречу с антигеном более мощной реакцией.

Врождённый и приобретённый иммунитет работают совместно таким образом, что иммунный ответ приспособлен к виду и тяжести воздействия.

Приобретённый иммунитет представляет собой задержанный, но высокоэффективный иммунный ответ против специфических анти- генов. Приобретённый иммунитет подразделяется на клеточный, мишенями которого служат инфицированные клетки, а исполнителями - Т-клетки, и гуморальный иммунитет, который подавляет инфекционные агенты в крови и тканях посредством B-клеток и их антител.

B- и Т-клетки содержат антигенспецифические рецепторы. B-клетки связывают непосредственно антиген, Т-клетки - антиген, представленный комплексом MHC белков.

Стимуляция антигеном и другими сигналами побуждает Т-лимфоциты клонировать эффекторные клетки и клетки памяти.

Активированные B-клетки превращаются в антитела, продуцирующие плазматические клетки и клетки памяти.

Антитела представляют собой специфически связывающие антигены белки, которые нейтрализуют и опсонизируют антиген и стимулируют комплемент к участию во многих иммунных реакциях. Антитела встречаются в пяти изотипах со специальными функциями.

Деятельность иммунной системы тесно переплетена с деятельностью эндокринной и нервной системы при поддержании гомеостаза организма.

 №8 Возбудимые ткани и их основные свойства

Возбудимые ткани - это ткани, котоpые способны воспpинимать действие pаздpажителя и отвечать на него пеpеходом в состояние возбуждения

К возбудимым тканям относятся тpи вида тканей - это неpвная, мышечная и железистая

Возбудимые ткани обладают pядом общих и частных свойств.

Общими свойствами возбудимых тканей являются:

1.Раздpажимость

2.Возбудимость

.Пpоводимость

.Память

Раздpажимость - это способность клетки, ткани или оpгана воспpинимать действие pаздpажителя изменением метаболизма, стpуктуpы и функций

Раздpажимость является унивеpсальным свойством всего живого и является основой пpиспособительных pеакций живого оpганизма к постоянно меняющимся условиям внешней и внутpенней сpеды.

Возбудимость - это способность клетки, ткани или оpгана отвечать на действие pаздpажителя пеpеходом из состояния функционального покоя в состояние физиологической активности

Возбудимость - это новое, более совеpшенное свойство тканей, в котоpое (в пpоцессе эволюции) тpансфоpмиpовалась pаздpажимость. Разные ткани обладают pазличной возбудимостью: неpвная > мышечная > железистая

Меpой возбудимость является поpог pаздpажения

Поpог pаздpажения - это минимальная сила pаздpажителя, способная вызвать pаспpостpоняющееся возбуждение

Возбудимость и поpог pаздpажения находятся в обpатной зависимости (чем > возбудимость, тем < поpог pаздpажения)

Возбудимость зависит от:

1.Величины потенциала покоя

2.Уpовня кpитической деполяpизации

Потенциал покоя - это pазность потенциалов между внутpенней и наpужней повеpхностями мембpаны в состояни покоя

Уpовень кpитической деполяpизации - это та величина мембpанного потенциала, котоpую необходимо достичь, чтобы возбуждение носило pаспpостpаняющийся хаpактеp

Разница между значениями потенциала покоя и уpовнем кpитической деполяpизации опpеделяет поpог деполяpизации (чем < поpог деполяpизации, тем > возбудимость)

Пpоводимость - это способность пpоводить возбуждение

Пpоводимость опpеделяется:

1.Стpоением ткани

2.Функциональными особенностями ткани

.Возбудимостью

Память - это способность фиксиpовать изменения функционального состояния клетки, ткани, оpгана и оpганизма на молекуляpном уpовне

Опpеделяется генетической пpогpаммой

Позволяет отвечать на действие отдельных, значимых для оpганизма pаздpажителей с опеpежением

К частным свойствам возбудимых тканей относятся:

1.Сокpатимость

2.Секpетоpная деятельность

.Автоматия

Сокpатимость - способность мышечных стpуктуp изменять длину или напpяжение в ответ на возбуждение

Зависит от вида мышечной ткани

Секpетоpная активность - это способность выделять медиатоp или секpет в ответ на возбуждение

Теpминали нейpонов секpетиpуют медиатоpы

Железистые клетки экскpетиpуют пот, слюну, желудочный и кишечный сок, желчь, а также инкpетиpуют гоpмоны и биологически активные вещества

Автоматия - это способность самостоятельно возбуждаться, то есть возбуждаться без действия pаздpажителя или пpиходящего неpвного импульса

Хаpактеpна для сеpдечной мышцы, гладкой мускулатуpы, отдельных неpвных клеток центpальной неpвной системы

Для возбудимых тканей хаpактеpно 2 вида функциональной активности

Физиологический покой - состояние без пpоявлений специфической деятельности (пpи отсутствии действия pаздpажителя)

Возбуждение - активное состояние, котоpое пpоявляется стpуктуpными и физико-химическими сдвигами (специфическая фоpма pеагиpования в ответ на действие pаздpажителя или пpиходящего неpвного импульса)

Различные виды функциональной активности опpеделяются стpуктуpой, свойством и состоянием плазматических мембpан

9 Функции: 1. Барьерная – мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии.

2.Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («посредников»).

3.Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).

4.Высвобождение нейромедиаторов в синаптических окончаниях.

Жидкостно-мозаичная модель Сингера и Николсона:

В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.

Некоторые белковые молекулы свободно диффундируют в плоскости липидного слоя; в обычном состоянии части белковых молекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения.

Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.

Емкостные свойства в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эффективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов. Активный транспорт - транспорт веществ через мембрану, который осуществляется против градиента концентрации и требует значительных затрат энергии. Одна треть основного обмена тратиться на активный транспорт.

Активный транспорт бывает:

1. Первично-активый - такой транспорт, для обеспечения которого используется энергия макроэргов - АТФ, ГТФ, креатинфосфат. Например: Калиево-натриевый насос - важная роль в процессах возбудимости в клетке. Он вмонтирован в мембрану.

Калиево-натриевый насос - фермент калий-натриевая АТФаза. Этот фермент - белок. Он существует в мембране в виде 2-х форм:

-Е 1, Е 2

В ферментах существует активный участок, который взаимодействует с калием и с натрием. Когда фермент находится в форме Е 1, его активный участок обращен внутрь клетки и обладает высоким сродством к натрию, а значит способствует его присоединению (3 атома Na). Как только натрий присоединяется, происходит конформация этого белка, которая перемещает 3 атома натрия через мембрану и с наружной поверхности мембраны натрий отсоединяется. При этом происходит переход фермента из формы Е 1 в Е 2. Е 2 имеет активный участок, обращенный к наружной поверхности клетки, обладает высоким сродством к калию. При этом 2 атома К присоединяется к активному участку фермента, изменяется конформация белка и калий перемещается внутрь клетки. Это происходит с большой затратой энергии, так как фермент АТФаза постоянно расщепляет энергию АТФ.

2. Вторично-активный - это транспорт, который осуществляется тоже против градиента концентрации, но на это перемещение тратится не энергия макроэргов, а энергия электрохимических процессов, которая возникает при движении каких-либо веществ через мембрану при первично-активном транспорте.

Например: Сопряженный транспорт натрия и глюкозы, энергия - за счет перемещения натрия в калиево-натриевом насосе.

Классическим примером вторично-активного транспорта выступает натрий – Н (аш)-обменник - когда обмениваются натрий и водород (это тоже вторично-активный транспорт).

Способы транспортировки через мембрану:

1. Унипорт - это такой вид транспорта веществ через мембрану, когда переносчиком или каналом транспортируется одно вещество (Na-каналы)

2. Симпорт - это такой вид транспорта, когда 2 или более веществ в своем транспорте через мембрану взаимосвязаны и транспортируются вместе в одном направлении. (Na и глюкоза - в клетку) Это вид сопряженного транспорта

3. Антипорт - такой сопряжѐнный вид транспорта, когда его участники друг без друга не могут транспортироваться, но потоки идут навстречу друг другу (К-Na-насос-активный вид транспорта).

Эндоцитоз, экзоцитоз - как формы транспорта веществ через мембрану.

10 История изучений биоэлектрических явлений в тканях

Первые попытки по изучению биоэлектрических явлений («животного электричества») известны с ХVIII века, когда были выполнены исследования на «электрических» органах рыб (Адансон, 1751; Целп, 1773; Вильямсон, 1775 и др.). Все эти исследования подготовили благоприятную почву для трудов Гальвани, заложивших основу электрофизиологии как вполне самостоятельной области науки. В 1791 г. им были опубликованы результаты исследований, в том числе знаменитого «балконного» опыта (Рис. 1.5).

При подвешивании нервно - мышечного препарата на железную решетку с помощью медного крючка, проходящего через спинной мозг препарата, имело место сокращение мышц лапки каждый раз, когда эта лапка соприкасалась с железной решеткой балкона.

Гальвани считал, что причиной сокращения мышцы в данном случае является электричество, причем, источник этого электричества ученый видел именно в нервно - мышечном препарате лягушки.

Однако ему возразил его знаменитый соотечественник - физик А. Вольта, который считал, что в «балконном» опыте мышца является лишь чувствительным «электрометром» электричества, порождаемого контактной разностью потенциалов разных металлов, используемых в опытах Гальвани. Позднее, защищая свою точку зрения от возражений оппонентов, Гальвани воспроизводит различные модификации опытов, в которых сокращение мышцы вызывалось путем набрасывания нерва с помощью стеклянной палочки на поврежденный и неповрежденный участок мышцы.

Позднее открытия Гальвани были подтверждены в работах Маттеучи (1837).

Однако Маттеучи обнаружил явление вторичного или индуцированного сокращения: при помещении нерва одного нервно-мышечного препарата на мышцу другого препарата и раздражителя нерва этого препарата, Маттеучи наблюдал сокращение мышцы обоих препаратов

На основании этого явления Маттеучи выдвинул предположение об изменении электрических зарядов нервной ткани при ее возбуждении.

Дальнейшее развитие представлений о природе «животного электричества» связано с внедрением в физиологию экспериментальных приемов и техники. В 1820 году Швейгер сконструировал гальванометр, усовершенствовав который итальянский физик Нобиле применил его в 1827 г. для проверки опытов Гальвани. Однако наибольший интерес представляют работы Э.Дюбуа-Реймона, выполненные в 1840-1860 гг. В этих работах благодаря высокочувствительному гальванометру и ряду других технических новшеств удалось впервые определив электрические процессы в мышце, зарегистрировав потенциал наружной и внутренней поверхности мембраны клеток. Впервые он установил, что наружная мембрана заряжена положительно по отношению к внутренней, и эта разность потенциалов изменяется при сокращении мышцы.

Позднее, в 1896 г. В.Ю. Чаговец впервые высказал гипотезу о ионном механизме электрических потенциалов в живых клетках и сделал попытку применить для их объяснения теорию электролитической диссоциации Аррениуса. В 1902 г. Бернштейном была развита мембранно-ионная теория, согласно которой клеточная поверхность представляет собой полупроницаемую мембрану, которая в состоянии физиологического покоя проницаема для ионов калия и практически непроницаема для остальных вне - и внутриклеточных ионов. В 1936 году английский зоолог Джон Юнг обнаружил у кальмаров и каракатиц необычайно толстые аксоны, которые впоследствии стали называть "гигантскими аксонами". Их диаметр превышал 0,5 мм, что позволило достаточно легко вводить в них микроэлектроды, проводить химический анализ содержащейся в них жидкости, вводить в них различные растворы и т.д. «Гигантские аксоны» стали излюбленным объектом для изучения биоэлектрических явлений в тканях, с их помощью было получено много новых и интересных данных.

Современные представления о природе биоэлектрических явлений в тканях базируются на результатах работ Алана Ходжкина, Эндрью Хаксли, Бернарда Катца. Эти ученые в 40-50 годах нашего века модифицировали и экспериментально обосновали мембранно-ионную теорию Ю. Бернштейна. В настоящее время их взгляды о природе биоэлектрических явлений пользуются всеобщим признанием. Согласно их представлениям, наличие электрических потенциалов в живых клетках обусловлено различной концентрацией ионов Na+, K+, Ca2+ и Cl- внутри и вне клетки, а также различной проницаемостью для них клеточной мембраны. За разработку теории ионного механизма возбуждения эти авторы были удостоены звания лауреатов Нобелевской премии.

Здесь надо рассказывать про потенциал покоя и действия

Понятие о потенциале покоя. Роль ионов К+, Na+, Ca+2, Cl- в происхождении мембранного потенциала. Калий-натриевый насос, его значение. Уравнения Нернста и Гольдмана, расчет величины мембранного потенциала.

Потенциал покоя (ПП) - это разность потенциалов между наружной и внутренней поверхности мембраны в состоянии покоя, т.е. в покое мембрана поляризована.

Происхождение ПП обусловлено:

1. Неравномерным распределением ионов калия и натрия между цитоплазмой и межклеточной жидкостью.

В клетке - калия порядка 400 мкмоль/литр, вне клетки – 10, соответственно, натрия в клетке - 50 и 460 - вне клетки - в состоянии покоя.

2. Избирательная проницаемость клеточной мембраны в покое для натрия и калия.

В покое - высокая проницаемость для калия, а для натрия в покое она практически отсутствует небольшая.

В покое за счет процесса облегченной диффузии через неуправляемые медленные калиевые каналы за счет градиента концентрации - калий постоянно выходит из клетки во внеклеточное пространство, это формирует постоянный выходящий калиевый ток. Он является причиной разности потенциалов в покое и обуславливает ПП.

Постоянному выходящему калиевому току противодействует работа калиевая часть калий-натриего насоса, которая обеспечивает постоянное возвратное поступление 2 молекул калия из внешней среды в клетку. В покое скорости этих двух процессов невелики. В реальных условиях в клетке возникает некое равновесное состояние между выходящим калиевым током и входящим калиевым током. Это формирует некий равновесный потенциал /ЕК/, который формирует по существу ту реальную разность потенциалов, которая существует между наружной и внутренней поверхностью клетки, если бы ее создавал один вид ионов.

Его величина, описывается уравнением Нернста:

ie k KK nF RT E ln

где: R- газовая постоянная, Т- абсолютная температура, F- число Фарадея, Ке - концентрация свободных ионов калия в наружном растворе, Кi - их концентрация в цитоплазме, n - валентность, ln - натуральный логарифм.

По этой формуле Нернста можно подсчитать вклад калия в формирование потенциала мембраны в состоянии покоя, а так же - возбуждения. Реально равновесный потенциал для калия в покое равен минус 90 милливольт. Натрий, его равновесный потенциал в покое - плюс 60 милливольт. Хлор, для него равновесный потенциал равен - минус 70.

Гольдман - американский ученый - создал объединительное уравнение, в котором суммировал эти показатели потенциалов для натрия, калия, хлора, только в эти уравнения введено одно добавление - коэффициент проницаемости мембраны для иона, который характеризует скорость диффузии каждого из ионов. Расчет с использованием уравнения Гольдмана показывает, что в состоянии покоя потенциал мембраны составляет минус 70 милливольт. Реальные измерения ПП – 70-80 мВ. Таково электрическое состояние мембраны клетки в покое - она поляризована.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]