Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_po_fize.rtf
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.24 Mб
Скачать

№72 Средний мозг

 

Морфофункциональная организация. Средний мозг (mesencephalon) представлен четверохолмием и ножками мозга. Наиболее крупными ядрами среднего мозга являются красное ядро, черное вещество и ядра черепных (глазодвигательного и блокового) нервов, а также ядра ретикулярной формации.

 Сенсорные функции. Реализуются за счет поступления в него зрительной, слуховой информации.

 Проводниковая функция. Заключается в том, что через него проходят все восходящие пути к вышележащим таламусу (меди­альная петля, спииноталамический путь), большому мозгу и моз­жечку. Нисходящие пути идут через средний мозг к продолговатому и спинному мозгу. Это пирамидный путь, корково-мостовые волокна, руброретикулоспинальный путь.

 Двигательная функция. Реализуется за счет ядра блокового нерва (n. trochlearis), ядер глазодвигательного нерва (п. oculomotorius), красного ядра (nucleus ruber), черного вещества (substantia nigra).

 Красные ядра располагаются в верхней части ножек мозга. Они связаны с корой большого мозга (нисходящие от коры пути), под­корковыми ядрами, мозжечком, спинным мозгом (красноядерно-спинномозговой путь). Базальные ганглии головного мозга, мозжечок имеют свои окончания в красных ядрах. Нарушение связей красных ядер с ретикулярной формацией продолговатого мозга ведет к децеребрационной ригидности. Это состояние характеризуется сильным напряжением мышц-разгибателей конечностей, шеи, спины. Основной причиной возникновения децеребрационной ригидности служит выраженное активирующее влияние латерального вестибу­лярного ядра (ядро Дейтерса) на мотонейроны разгибателей. Это влияние максимально в отсутствие тормозных влияний красного ядра и вышележащих структур, а также мозжечка. При перерезке мозга ниже ядра латерального вестибулярного нерва децеребрационная ригидность исчезает.

 Красные ядра, получая информацию от двигательной зоны коры большого мозга, подкорковых ядер и мозжечка о готовящемся дви­жении и состоянии опорно-двигательного аппарата, посылают кор­ригирующие импульсы к мотонейронам спинного мозга по руброспинальному тракту и тем самым регулируют тонус мускулатуры, подготавливая его уровень к намечающемуся произвольному дви­жению.

 Другое функционально важное ядро среднего мозга — черное вещество — располагается в ножках мозга, регулирует акты жева­ния, глотания (их последовательность), обеспечивает точные дви­жения пальцев кисти руки, например при письме. Нейроны этого ядра способны синтезировать медиатор дофамин, который постав­ляется аксональным транспортом к базальным ганглиям головного мозга. Поражение черного вещества приводит к нарушению пла­стического тонуса мышц. Тонкая регуляция пластического тонуса при игре на скрипке, письме, выполнении графических работ обес­печивается черным веществом. В то же время при длительном удержании определенной позы происходят пластические изменения в мышцах за счет изменения их коллоидных свойств, что обеспе­чивает наименьшие затраты энергии. Регуляция этого процесса осуществляется клетками черного вещества.

 Нейроны ядер глазодвигательного и блокового нервов регулируют движение глаза вверх, вниз, наружу, к носу и вниз к углу носа. Нейроны добавочного ядра глазодвигательного нерва (ядро Якубо­вича) регулируют просвет зрачка и кривизну хрусталика.

 Рефлекторные функции. Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Верхние из них являются первичными подкорковыми центрами зрительного анализатора (вместе с латеральными коленчатыми телами проме­жуточного мозга), нижние — слухового (вместе с медиальными коленчатыми телами промежуточного мозга). В них происходит первичное переключение зрительной и слуховой информации. От бугров четверохолмия аксоны их нейронов идут к ретикулярной формации ствола, мотонейронам спинного мозга. Нейроны четверо­холмия могут быть полимодальными и детекторными. В последнем случае они реагируют только на один признак раздражения, на­пример смену света и темноты, направление движения светового источника и т. д. Основная функция бугров четверохолмия — ор­ганизация реакции настораживания и так называемых старт-ре­флексов на внезапные, еще не распознанные, зрительные или зву­ковые сигналы. Активация среднего мозга в этих случаях через гипоталамус приводит к повышению тонуса мышц, учащению со­кращений сердца; происходит подготовка к избеганию, к оборони­тельной реакции.

 Четверохолмие организует ориентировочные зрительные и слу­ховые рефлексы.

 У человека четверохолмный рефлекс является сторожевым. В случаях повышенной возбудимости четверохолмий при внезапном звуковом или световом раздражении у человека возникает вздра­гивание, иногда вскакивание на ноги, вскрикивание, максимально быстрое удаление от раздражителя, подчас безудержное бегство.

При нарушении четверохолмного рефлекса человек не может быстро переключаться с одного вида движения на другое. Следова­тельно, четверохолмия принимают участие в организации произ­вольных движений.

Рефлекторные функции. Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Верхние из них являются первичными подкорковыми центрами зрительного анализатора (вместе с латеральными коленчатыми телами промежуточного мозга), нижние — слухового (вместе с медиальными коленчатыми телами промежуточного мозга). В них происходит первичное переключение зрительной и слуховой информации. От бугров четверохолмия аксоны их нейронов идут к ретикулярной формации ствола, мотонейронам спинного мозга. Нейроны четверо­холмия могут быть полимодальными и детекторными. В последнем случае они реагируют только на один признак раздражения, на­пример смену света и темноты, направление движения светового источника и т. д. Основная функция бугров четверохолмия — организация реакции настораживания и так называемых старт-рефлексов на внезапные, еще не распознанные, зрительные или звуковые сигналы. Активация среднего мозга в этих случаях через гипоталамус приводит к повышению тонуса мышц, учащению сокращений сердца; происходит подготовка к избеганию, к оборонительной реакции.

Четверохолмие организует ориентировочные зрительные и слуховые рефлексы. У человека четверохолмный рефлекс является сторожевым. В случаях повышенной возбудимости четверохолмий при внезапном звуковом или световом раздражении у человека возникает вздрагивание, иногда вскакивание на ноги, вскрикивание, максимально быстрое удаление от раздражителя, подчас безудержное бегство. При нарушении четверохолмного рефлекса человек не может быстро переключаться с одного вида движения на другое. Следовательно, четверохолмия принимают участие в организации произвольных движений.

Дополнительно: Средний мозг

Основные структурные образования и их функции:

1. Верхние бугры четверохолмия - первичный центр зрения (зрительные ориентировочные рефлексы: зрачковый рефлекс, аккомодация и конвергенция за их счет).

2. Нижние бугры четверохолмия - первичный центр слуха (ориентировочные слуховые рефлексы: поворот головы, настораживание ушей).

Зрительные и слуховые ориентировочные рефлексы объединяются термином "сторожевой рефлекс". Его задача - подготовить организм к новому раздражению. Простейшая поведенческая реакция.

3. Черная субстанция - координация глотания и жевания;

- регуляция пластического тонуса.

При поражении - Болезнь Паркинсона (паркинсонизм): тремор, мышечная ригидность, нарушение тонкой координации движения пальцев рук.

4. Красное ядро - его функция - при перерезке между верхними и нижними буграми четверохолмия по Шеррингтону (ниже уровня красного ядра) - "децеребрационная ригидность". Характеризуется резким повышением тонуса мышц-разгибателей (кошка-статуэтка) из-за выключения красного ядра и РФ.

Тонические рефлексы ствола мозга (перераспределяют мышечный тонус в зависимости от положения тела в пространстве) подразделяются на 2 группы:

1. Статические (при спокойном состоянии - стоя, сидя, лежа):

а) рефлексы положения - обеспечивают позу;

б) позно-тонические - возвращение тела из неестественного положения в нормальное (подскользнулись - выпрямились), другое название - установочные (выпрямительные).

2. Стато-кинетические - при перемещении тела в пространстве, линейном или угловом ускорении или торможении (резкое торможение транспорта) - нистагм головы или глазных яблок.

73 см №72 + Средний мозг играет важную роль в регуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба. Роль среднего мозга в регуляции мышечного тонуса лучше всего наблюдать на кошке, у которой сделан поперечный разрез между продолговатым и средним мозгом. У такой кошки резко повышается тонус, мышц, особенно разгибателей. Голова запрокидывается назад, резко выпрямляются лапы. Мышцы настолько сильно сокращены, что попытка согнуть конечность заканчивается неудачей - она сейчас же распрямляется. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью.

Одна из структур продолговатого мозга – парное ядро Дейтерса, которое наряду с красными ядрами и буграми четверохолмия принимает участие в регуляции тонуса мышц. Наиболее наглядно это участие проявляется в “децеребрационной ригидности”. Децеребрация - это отделение части головного мозга от другой

74 Статические и статокинетические рефлексы, замыкающиеся на уровне

ствола мозга, регулируя тонус мышц, обеспечивают естественную позу, вос­становление нарушенной позы и со­хранение равновесия при перемещении организма в пространстве (Магнус Р., 1924).

Статические рефлексы обе­спечивают естественную позу в покое и восстановление нарушенной позы. Их разделяют на рефлексы позы (положе­ния тела, с вестибулорецепторов) и вы­прямительные рефлексы.

Вестибулярные рефлексы позы на­правлены на сохранение естественной позы, они замыкаются на уровне моста. Для их выявления на шею животного накладывают гипсовую повязку, чтобы исключить рефлексы с проприорецеп-торов шеи. При естественном положе­нии головы импульсация с рецепторов лабиринта минимальная. Если живот­ное располагается спиной вниз, то то­нус мышц-разгибателей становится максимальным (лабиринтный рефлекс); если животное располагается спиной вверх — минимальным. При вертикаль­ной позе человека (голова вверх, шея несколько наклонена вперед) шейные и лабиринтные рефлексы усиливают друг друга, происходит повышение тонуса разгибателей нижних конечностей и сгибателей верхних конечностей. После выключения вестибулярного аппарата в эксперименте у животного вестибуляр­ный рефлекс исчезает (опыт Р. Магнуса). Этот рефлекс сохраняется у бульбарно-го организма (перерезка ствола мозга между мостом и верхними бугорками четверохолмия среднего мозга), однако возникает резкое преобладание тонуса мышц-разгибателей и понижение тону­са мышц-сгибателей — децеребрацион-ная ригидность (Шеррингтон Ч., 1896). Ригидность развивается вследствие пре обладания возбуждающих нисходящих влияний на альфа- и гамма-мотонейроны над тормозными (см. рис. 6.16). Бульбар-ный организм не может поддерживать естественную позу. При наклоне голо­вы влево или вправо повышается тонус мышц-разгибателей на соответствую­щей стороне (предотвращение падения вследствие смещения центра тяжести). При поражении лабиринта одного уха человек часто падает на эту сторону.

Выпрямительные рефлексы наблю­даются у мезэнцефального организма при обязательном участии красного ядра (перерезка в эксперименте между средним и промежуточным мозгом). Благодаря этим рефлексам организм способен принимать естественную позу при ее нарушении, например, при по­ложении животного на боку. Вначале выпрямляется голова (рефлексогенная зона — вестибулярный аппарат и кожа), затем — туловище (рефлексогенная зона — проприорецепторы мышц шеи и рецепторы кожи). При выключении этих рецепторов рефлексы исчезают. В условиях натуральной жизни важную роль в осуществлении выпрямительных рефлексов играет зрение.

Статокинетичес кие реф­лексы возникают при ускорениях прямолинейного или вращательно­го движений организма. Сокращения мышц при этом направлены на преодо­ление действующих на человека ускоре­ний, на сохранение нормальной позы, ориентации в пространстве. Они также осуществляются с помощью среднего мозга. Эти рефлексы запускаются с ре­цепторов вестибулярного аппарата. Они включают лифтные рефлексы, нистагм головы и глаз, перераспределение мы­шечного тонуса при ходьбе и беге.

Лифтные рефлексы. При остановке движущегося вниз лифта и в начале бы-

строго подъема лифта, в нижних конеч­ностях повышается тонус мышц-разги­бателей, что обеспечивает преодоление сил инерции, хотя наблюдается некото­рое сгибание конечностей под влиянием массы тела. В начале опускания лифта и при остановке движущегося вверх лифта наблюдаются противоположные явле­ния. Правда, существует и другая точка зрения, учитывающая только внешние признаки — пассивное сгибание или разгибание конечностей.

Глазной нистагм (пилообразные дви­жения глаз), способствует сохранению зрительной ориентации. Нистагм имеет две фазы. При вращении сначала про­исходит медленное отклонение глаз­ных яблок в сторону, противоположную вращению. Затем глаза быстро движутся обратно — по ходу вращения «догоня­ют организм». Медленное отклонение вызывается с рецепторов полукружных каналов, быстрый компонент связан с влиянием корковых центров (при нар­козе он исчезает). Во врачебной прак­тике направление нистагма обозначают по быстрому компоненту. Исследование нистагма (степени его выраженности, длительности) используется для оценки функционального состояния вестибу­лярного анализатора и дифференциаль­ной диагностики поражения ЦНС.

Перераспределение мышечного тонуса при ходьбе и беге обеспечивает сохране­ние равновесия и естественной позы. Например, при сгибании одной конеч­ности тонус мышц-разгибателей другой конечности повышается. Мезэнцефа-лический организм имеет нормальный тонус мышц, но у него отсутствуют про­извольные движения. Однако в среднем мозге, как и в спинном, имеются ней­ронные цепи, в которых запрограмми­рованы ритмические движения конеч­ностей (локомоция); они возникают при стимуляции соответствующих центров. В нормальных условиях их деятельность запускается корой большого мозга

Дополнительно: Ядра среднего мозга обеспечивают поддержание равновесия в условиях покоя и ускорения, с участием нейронов продолговатого мозга и варолиева моста. Это проявляется в наличии статических и статокинетических рефлексов (голл. физиолог Магнус, 1924 г.);

А. Статические:

1.Позно-тонические рефлексы

2. Выпрямительные рефлексы

Статические рефлексы связаны главным образом с возбуждением рецепторов преддверия лабиринта и обеспечивают поддержание позы и равновесия тела при самых разнообразных его статических положениях в пространстве.

Позно-тонические рефлексы начинаются от проприорецепторов мышц шеи или вестибулярного аппарата и направлены на перераспределение мышечного тонуса для поддержания позы тела, когда смещаются голова и шея. Например, у человека наклон головы вперед повышает тонус всех мышц сгибателей, а назад – разгибателей. У животных при наклоне головы вниз повышается тонус сгибателей передних конечностей и разгибателей – задних. При подъеме головы наблюдается противоположное: передние конечности разгибаются, а задние - сгибаются.

Выпрямительные рефлексы определяют перераспределение тонуса мышц, приводящее к восстановлению естественной для данного вида животного позы из неестественной..

Б. Статокинетические рефлексы – это рефлексы, направленные на сохранение позы и ориентацию в пространстве при действии различных видов ускорения. К ним относятся:

- лифтный рефлекс – при подъеме вверх повышается тонус сгибателей ног, при езде вниз – повышается тонус разгибателей ног.

- нистагм глазных яблок – при вращении человека вокруг своей оси наблюдаются движения глазных яблок – медленное движение глазных яблок в сторону противоположную вращению и быстрый возврат в сторону вращения. Сигнал от вестибулорецепторов через вестибулярные ядра поступает к ядрам 3,4 и 6 пар ч.м.н., которые обеспечивают изменение положения в пространстве глазных яблок и одновременно через вестибулоспинальный тракт меняется тонус мышц конечностей и туловища в результате чего сохраняется равновесие.

- у животных – рефлекс свободного падения – когда бросаем кошку вниз головой с высоты, она всегда приземляется на 4 лапы.

В реализации статических и статокинетических рефлексов участвуют нейроны вестибулярных ядер, красного ядра и ретикулярной формации.

В. Ориентировочные зрительные и слуховые рефлексы - см. выше (по Павлову рефлекс «Что такое?)». У животных они проявляются в повороте головы и тела по направлению к свету и звуку, настораживании ушей и усилении тонуса мышц сгибателей.

Г. Рефлексы, участвующие в обеспечении зрения (зрачковый рефлекс, аккомодация). Эти рефлексы улучшают ориентировку организма в пространстве.

Д. Рефлексы жевания и глотания – обеспечение их интеграции, согласования между собой.

В поддержании состояния равновесия тела принимает участие целый ряд сложных систем. Важная роль принадлежит вестибулярному аппарату. Его рецепторная часть расположена во внутреннем ухе и состоит из мешочков преддверия и трех полукружных каналов. При возбуждении вестибулярного аппарата происходит раздражение волосков чувствительного эпителия. Возникающие импульсы передаются по вестибулярному нерву в мозг. В процессе поддержания равновесия тела вестибулярная система осуществляет тесное взаимодействие со зрительным аппаратом. Оба эти аппарата (вестибулярный и зрительный) имеют обширные двусторонние связи с мозжечком. Мозжечок также является очень важным иннервационным звеном в сохранении равновесия тела. Большую роль играют многочисленные рецепторы мышц, сухожилий, суставов и кожи, и прежде всего механизмы мышечного тонуса, а также проприоцептивные рефлексы. Координация всех этих механизмов, обеспечивающих равновесие тела, происходит на разных уровнях нервной системы — в спинном мозге, стволе мозга и  в  коре больших полушарий.

75 Особенности морфофункциональной организации и связи мозжечка.  Мозжечок  входит  в состав  заднего   мозга. Мозжечок связан с другими отделами мозга с помощью афферентных и эфферентных путей. Афферентные пути идут к нему из спинного, продолговатого мозга, варолиевого моста, четверохолмия. От клеток Пуркинье мозжечка начинаются пути к ядрам мозжечка - зубчатому, пробковидному, шарообразному. От этих ядер эфферентные волокна идут к среднему мозгу. Через красное ядро мозжечок соединяется эфферентными путями и с корой больших полушарий. Мозжечок (cerebellum, малый мозг) — одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций.

Реализация указанных функций обеспечивается следующими морфологическими особенностями мозжечка:

1) кора мозжечка построена достаточно однотипно, имеет стереотипные связи, что создает условия для быстрой обработки информации;

2)     основной нейронный элемент коры — клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на ядерных его структурах

3)     на клетки  Пуркинье проецируются практически все виды сенсорных раздражений: проприоцептивные, кожные, зрительные, слуховые, вестибулярные и др.;         Деятельность мозжечка имеет ближайшее отношение к осуществлению произвольных движений. Однако повреждение мозжечка не влечет за собой двигательных и сенсорных параличей.

4)     выходы из мозжечка обеспечивают его связи с корой большого мозга, со стволовыми образованиями и спинным мозгом.

Мозжечок анатомически и функционально делится на старую, древнюю и новую части.  К старой части мозжечка (archicerebellum) — вестибулярный мозжечок — относится клочково-флоккулярная доля. Эта часть имеет наиболее выраженные связи с вестибулярным анализатором, что объясняет значение мозжечка в регуляции равновесия. Древняя часть мозжечка (paleocerebellum) — спинальный мозжечок — состоит из участков червя и пирамиды мозжечка, язычка, околоклочкового отдела и получает информацию преимущественно от проприорецептивных систем мышц, сухожилий, надкостницы, оболочек суставов. Новый мозжечок (neocerebellum) включает в себя кору полуша­рий мозжечка и участки червя; он получает информацию от коры, преимущественно по лобно-мостомозжечковому пути, от зрительных и слуховых рецептирующих систем, что свидетельствует об его участии в анализе зрительных, слуховых сигналов и организации на них реакции.

Строение коры мозжечка.Кора мозжечка имеет специфическое, нигде в ЦНС не повторяющееся, строение. Верхний (I) слой коры мозжечка — молекулярный слой, состоит из параллельных волокон, разветвлений дендритов и аксонов II и III слоев. В нижней части молекулярного слоя встречаются корзинчатые и звездчатые клетки, которые обеспечивают взаимодействие клеток Пуркинье. Средний (II) слой коры образован клетками Пуркинье, выстроенными в один ряд и имеющими самую мощную в ЦНС дендритную систему. На дендритном поле одной клетки Пуркинье может быть до 60000 синапсов. Следовательно, эти клетки выполняют задачу сбора, обработки и передачи информации.

Аксоны клеток Пуркинье являются единственным путем, с помощью которого кора мозжечка передает информацию в его ядра и ядра структуры большого мозга. Под II слоем коры (под клетками Пуркинье) лежит гранулярный (III) слой, состоящий из клеток-зерен, число которых достигает 10 млрд. Аксоны этих клеток поднимаются вверх, Т-образно делятся на поверхности коры, образуя дорожки контактов с клетками Пуркинье. Здесь же лежат клетки Гольджи.

Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга.  Импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота генерации импульсов этих клеток колеблется от 20 до 200 в секунду. Клетки ядер мозжечка генерируют импульсы значительно реже — 1—3 импульса в секунду.

В кору мозжечка от кожных рецепторов, мышц, суставных оболочек, надкостницы сигналы поступают по так называемым спинно-мозжечковым трактам: по заднему (дорсальному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. От клеток олив идут так называемые лазающие волокна, которые ветвятся на дендритах клеток Пуркинье. Ядра моста посылают афферентные пути в мозжечок, образующие мшистые волокна, которые оканчиваются на клетках-зернах III слоя коры мозжечка. Между мозжечком и голубоватым местом среднего мозга существует афферентная связь с помощью адренергических волокон. Эти волокна способны диффузно выбрасывать норадреналин в межклеточное пространство коры мозжечка, тем самым гуморально изменяют состояние возбудимости его клеток..

Аксоны клеток III слоя коры мозжечка вызывают торможение клеток Пуркинье и клеток-зерен своего же слоя. Клетки Пуркинье в свою очередь тормозят активность нейронов ядер мозжечка. Ядра мозжечка имеют высокую тоническую активность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.

Подкорковая система мозжечка состоит из трех функционально разных ядерных образований: ядра шатра, пробковидного, шаровидного и зубчатого ядра. Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и РФ продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга.

Промежуточная кора мозжечка проецируется на пробковидное и шаровидное ядра. От них связи идут в средний мозг к красному ядру, далее в спинной мозг по руброспинальному пути. Второй путь от промежуточного ядра идет к таламусу и далее в двигательную зону коры большого мозга. Зубчатое ядро, получая информацию от латеральной зоны коры мозжечка, связано с таламусом, а через него — с моторной зоной коры большого мозга.

Мозжечковый контроль двигательной активности . Эфферентные сигналы из мозжечка к спинному мозгу регулируют силу мышечных сокращений, обеспечивают способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью этого движения, быстро переходить от сгибания к разгибанию и наоборот.  Мозжечок обеспечивает синергию сокращений разных мышц при сложных движениях. Например, делая шаг при ходьбе, человек заносит вперед ногу, одновременно центр тяжести туловища пере­носится вперед при участии мышц спины.

Симптомы поражения мозжечка.  В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций, что выражается следующими симптомами.

1)     астения (astenia — слабость) — снижение силы мышечного сокращения, быстрая утомляемость мышц;

2)     астазия (astasia, от греч. а — не, stasia — стояние) — утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение и т. д.;

3)     дистония (distonia — нарушение тонуса) — непроизвольное повышение или понижение тонуса мышц;

4)     тремор (tremor — дрожание) — дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении;

5)     дисметрия (dissymmetric — нарушение меры) — расстройство равномерности движений, выражающееся либо в излишнем, либо недостаточном движении. Больной пытается взять предмет со стола и проносит руку за предмет (гиперметрия) или не доносит ее до предмета (гипометрия);

6)     атаксия (ataksia, от греч. а — отрицание, taksia — порядок) — нарушение координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в опре­деленной последовательности. Проявлениями атаксии являются так­ же адиадохокинез, асинергия, пьяная (шаткая) походка.

7) дизартрия (disartria) — расстройство организации речевой моторики. При повреждении мозжечка речь больного становится растянутой, слова иногда произносятся как бы толчками (сканди­рованная речь).

К этим симптомам следует добавить адиадохокинез, дизэквилибрию, дисметрию - различные проявления нарушения координации движений. У собак, лишенных мозжечка, стато-кинетические и стато-тонические рефлексы сохраняются - если поместить такую собаку в жидкость с удельным весом, близким к удельному весу собаки, то она может плавать, тогда как в воздушной среде она совершает разрозненные, слабые, мало связанные друг с другом движения. При адиадохокинезе человек не способен быстро вращать ладони вниз—вверх. При асинергии мышц он не способен сесть из положения лежа без помощи рук. Пьяная походка характеризуется тем,  что человек ходит, широко расставив ноги, шатаясь из стороны в сторону от  линии ходьбы. Врожденных двигательных актов у человека не так уж много (например, сосание), большинство же движений он выу­чивает в течение жизни и они становятся автоматическими (ходьба, письмо и т.д.). Когда нарушается функция мозжечка, движения становятся неточными, негармоничными, разбросанными, часто не достигают цели.

     Таким образом, мозжечок нельзя считать органом равновесия, ему нельзя приписывать и значение органа, координирующего движения тела. Роль мозжечка сводится к воздействиям на нижележащие центры, направленные на поддержание тонуса, устойчивости реакций в нервных центрах в точном соответствии этих реакций с текущими задачами, выдвигаемыми перед организмом в данный момент. Функция мозжечка заключается, таким образом, в рефлекторном обеспечении правильного перемещения тела в пространстве, что в свою очередь достигается обеспечением правильного напряжения различных мышечных групп, торможением лишних движений, лишних примитивных двигательных рефлексов. Физиологической основой этой функции являются рефлекторные регулирующие влияния на двигательные нейроны, иннервирующие скелетную мускулатуру через красное ядро и ядро Дейтерса. Стимулом к проявлению этих координирующих рефлексов служат импульсы с проприорецепторов мышц.

       С течением времени расстройства, вызванные у животных удалением мозжечка, сглаживаются, и движения таких животных мало чем отличаются от нормальных. Все явления такой компенсации исчезают после удаления коры больших полушарий.

      Помимо влияния на течение реакций в центрах мышечной деятельности, мозжечок оказывает постоянное влияние на течение процессов, регулируемых вегетативной нервной системой, особенно тех, которые имеют отношение к питанию мышц (вегетативное обеспечение мышечных движений).

При повреждении мозжечка наблюдается повышение тонуса мышц-разгибателей. Регуляция мышечного тонуса с помощью мозжечка происходит следующим образом: проприоцептивные сигналы о тонусе мышц поступают в область червя и клочково-узелковую долю, отсюда — в ядро шатра, далее — к ядру преддверия и РФ продолговатого и среднего мозга и, наконец, по ретикулярно- и вестибулоспинальным путям к нейронам передних рогов спинного мозга, иннервирующих мышцы, от которых поступили сигналы. Следовательно, регуляция мышечного тонуса реализуется по принципу обратной связи.  Следует отметить, что характер влияния на тонус мышц определяется частотой генерации импульсов нейронов ядра шатра. При высокой частоте (30—300 имп/с) тонус мышц-разгибателей снижается, при низкой (2—10 имп/с) — увеличивается. Таким образом, мозжечок, получив информацию о готовящемся движении, корректирует программу подготовки этого движения в коре и одновременно готовит тонус мускулатуры для реализации этого движения через спинной мозг.

Изменение тонуса мышц после повреждения мозжечка обусловлено тем, что исчезает торможение лабиринтных и миотатических рефлексов, которое в норме осуществляется мозжечком. В норме вестибулярные ядра активируют мотонейроны спинного мозга мышц-разгибателей, а мозжечок тормозит активность нейронов преддверного ядра. При повреждении мозжечка вестибулярные ядра бесконтрольно активируют мотонейроны передних рогов спинного мозга, в результате повышается тонус мышц-разгибателей конечностей.

При повреждении мозжечка усиливаются и проприоцептивные рефлексы спинного мозга (рефлексы, вызываемые при раздражении рецепторов   сухожилий, мышц, надкостницы, оболочек   суставов), но в этом случае снимается тормозное влияние на мотонейроны спинного мозга ретикулярной формации продолговатого мозга.

В норме мозжечок активирует пирамидные нейроны коры большого мозга, которые тормозят активность мотонейронов спинного мозга. Чем больше мозжечок активирует пирамидные нейроны коры, тем более выражено торможение мотонейронов спинного мозга. При повреждении мозжечка это торможение исчезает, так как активация пирамидных клеток прекращается. Таким образом, в случае повреждения мозжечка активируются нейроны вестибулярных ядер и ретикулярной формации продолговатого мозга, которые активируют мотонейроны спинного мозга. Одновременно активность пирамидных нейронов снижается, а сле­довательно, снижается их тормозное влияние на те же мотонейроны спинного мозга. В итоге, получая возбуждающие сигналы от про­долговатого мозга при одновременном уменьшении тормозных вли­яний от коры большого мозга (после повреждения структур моз­жечка), мотонейроны спинного мозга активируются и вызывают гипертонус мышц.

Взаимодействие мозжечка и коры большого мозга . Это взаимодействие организовано соматотопически. Функционально мозжечок может оказывать облегчающее, тормозящее и компенсаторное влияние на реализацию функций коры большого мозга.

Роль взаимодействия лобной доли коры большого мозга с мозжечком хорошо проявляется при частичных повреждениях мозжечка. Одномоментное удаление мозжечка приводит к гибели человека, в то же время, если удаляется часть мозжечка, это вмешательство, как правило, не смертельно. После операции частичного удаления мозжечка возникают симптомы его повреждения (тремор, атаксия, астения и т. д.), которые затем исчезают. Если на фоне исчезновения мозжечковых симптомов нарушается функция лобных долей мозга, то мозжечковые симптомы возникают вновь. Следовательно, кора лобных долей большого мозга компенсирует расстройства, вызываемые повреждением мозжечка. Механизм данной компенсации ре­ализуется через лобно-мостомозжечковый тракт.

Мозжечок за счет своего влияния на сенсомоторную область коры может изменять уровень тактильной, температурной, зрительной чувствительности. Оказалось, что повреждение мозжечка сни­жает уровень восприятия критической частоты мельканий света (наименьшая частота мельканий, при которой световые стимулы воспринимаются не как отдельные вспышки, а как непрерывный свет).

Удаление мозжечка приводит к ослаблению силы процессов возбуждения и торможения, нарушению баланса между ними, развитию инертности. Выработка двигательных условных рефлексов после уда­ления мозжечка затрудняется, особенно в случаях формирования локальной, изолированной двигательной реакции. Точно так же замедляется выработка пищевых условных рефлексов, увеличивается скрытый (латентный) период их вызова.

Влияние мозжечка на вегетативные функции  . Мозжечок оказывает угнетающее и стимулирующее влияние на работу сердечно­сосудистой, дыхательной, пищеварительной и других систем организма. В результате двойственного влияния мозжечок стабилизи­рует, оптимизирует функции систем организма.

Сердечно-сосудистая система реагирует на раздражение мозжечка либо усилением (например, прессорные рефлексы), либо снижением этой реакции. Направленность реакции зависит от фона, на котором она вызывается. При раздражении мозжечка высокое кровяное давление снижается, а исходное низкое — повышается. Раздражение мозжечка на фоне учащенного дыхания (гиперпноэ) снижает частоту дыхания. При этом одностороннее раздражение мозжечка вызывает на своей стороне снижение, а на противоположной — повышение тонуса дыхательных мышц.

Удаление или повреждение мозжечка приводит к уменьшению тонуса мускулатуры кишечника, из-за низкого тонуса нарушается эвакуация содержимого желудка и кишечника. Нарушается также нормальная динамика секреции и всасывания в желудке и кишеч­нике.

Обменные процессы при повреждении мозжечка идут более интенсивно, гипергликемическая реакция (увеличение количества глюкозы в крови) на введение глюкозы в кровь или на прием ее с пищей возрастает и сохраняется дольше, чем в норме, ухудшается аппетит, наблюдается исхудание, замедляется заживление ран, волокна скелетных мышц подвергаются жировому перерождению.

При повреждении мозжечка нарушается генеративная функция, что проявляется в нарушении последовательности процессов родовой деятельности. При возбуждении или повреждении мозжечка мышечные сокращения, сосудистый тонус, обмен веществ и т. д. реагируют так же, как при активации или повреждении симпатического отдела вегетативной нервной системы.

Таким образом, мозжечок принимает участие в различных видах деятельности организма: моторной, соматической, вегетативной, сенсорной, интегративной и т. д. Однако эти функции мозжечок реализует через другие структуры центральной нервной системы. Мозжечок выполняет функцию оптимизации отношений между различными отделами нервной системы, что реализуется, с одной стороны, активацией отдельных центров, с другой — удержанием этой активности в определенных рамках возбуждения, лабильности и т. д. После частичного повреждения мозжечка могут сохраняться все функции организма, но сами функции, порядок их реализации, количественное соответствие потребностям трофики организма на­рушаются.

Таким образом, мозжечок  играет первостепенную роль в регуляции позы и движений.  Многие движения могут оптимально осуществляться только при участии мозжечка. В то же время он не принадлежит к числу жизненно важных органов, поскольку  у людей, рожденных без мозжечка, отсутствуют серьезные двигательные нарушения. Мозжечок состоит из двух полушарий и имеет кору из серого вещества. В коре находятся клетки с многочисленными дендритами, получающие импульсы из многих источников, связанных с мышечной деятельностью: проприоцепторов сухожилий, суставов и мышц, а также от моторных центров коры. Поэтому мозжечок интегрирует информацию и координирует работу всех мышц, участвующих в движении или сохранении позы. При повреждении мозжечка движения становятся резкими, а не плавными. Мозжечок абсолютно необходим для координации быстрых движений таких, как бег, набор текста на клавиатуре, разговор.

Все функции мозжечка осуществляются без участия коры больших полушарий, т.е. бессознательно. Однако на ранних этапах онтогенеза или научения они могут включать элементы тренировки. В это время кора управляет мозжечком, и необходимы определенные волевые усилия для реализации двигательных актов. Например, это имеет место при обучении езде на велосипеде, плаванию и т.д. После же выработки и закрепления двигательных актов мозжечок берет на себя функцию контроля соответствующих рефлексов.

76 Структура ретикулярной формации. Ретикулярная формация (formatio reticularis; РФ) мозга представлена сетью нейронов с многочисленными диффузными связями между собой и практически со всеми структурами центральной нервной системы. РФ располагается в толще серого вещества продолговатого, среднего, промежуточного мозга и изначально связана с РФ спинного мозга.  Термин "ретикулярная формация мозга" (РФ) был впервые введен в науку Дейтерсом более ста лет назад. РФ - это образование, расположенное в центральной части мозгового ствола. Благодаря большому количеству проходящих в различных направлениях нервных волокон она имеет сетчатую (ретикулярную) структуру.     Несмотря на то, что анатомия РФ привлекала внимание ученых уже с середины прошлого века, более или менее четкого представления о ее физиологических функциях не было.

Интерес к РФ возрос около 50 лет назад. В 1944 году в США во время эпидемии полиомиелита, заболевания, нарушающего двигательную функцию, гистологическими исследованиями срезов мозга было показано, что полиомиелитом поражаются структуры спинного мозга и особенно ретикулярной формации мозгового ствола. Этот факт навел американского физиолога Мэгуна на мысль о том, что РФ влияет на двигательную активность. В 1944 году вышло исследование Мэгуна о влиянии РФ на моторную активность организма. В дальнейшем Мэгун и итальянский ученый Моруцци отчетливо показали, что РФ определенным образом влияет и на деятельность спинного мозга, и на деятельность коры больших полушарий. Это положило начало огромному числу исследований, посвященных физиологии РФ, в результате которых было показано, что она оказывает влияние на самые различные функции организма.

РФ представляет собой центрально расположенное в стволе мозга образование, заходящее оральным концом в таламус, а каудальным - в спинной мозг. Средняя часть мозгового ствола образована специфическими по форме и величине нейронами, тесно переплетенными друг с другом. Большим количеством исследований было показано, что РФ не является не дифференцированным образованием. В ней был выделен целый ряд ядер и групп ядер, отличающихся различной структурой и состоящих из разных нейронов, как по форме, так и по размерам. Для нейронов РФ характерно огромное количество оканчивающихся на них синапсов (до 40000 на одной клетке), что указывает на возможность широких межнейрональных связей в пределах РФ. Такие связи осуществляются и с другими отделами ЦНС.

Интерес к РФ возрос около 50 лет назад. В 1944 году в США во время эпидемии полиомиелита, заболевания, нарушающего двигательную функцию, гистологическими исследованиями срезов мозга было показано, что полиомиелитом поражаются структуры спинного мозга и особенно ретикулярной формации мозгового ствола. Этот факт навел американского физиолога Мэгуна на мысль о том, что РФ влияет на двигательную активность. В 1944 году вышло исследование Мэгуна о влиянии РФ на моторную активность организма. В дальнейшем Мэгун и итальянский ученый Моруцци отчетливо показали, что РФ определенным образом влияет и на деятельность спинного мозга, и на деятельность коры больших полушарий. Это положило начало огромному числу исследований, посвященных физиологии РФ, в результате которых было показано, что она оказывает влияние на самые различные функции организма.

РФ имеет прямые и обратные связи с корой большого мозга, базальными ганглиями, промежуточным мозгом, мозжечком, сред­ним, продолговатым и спинным мозгом.

РФ ствола мозга имеет прямое отношение к регуляции мышечного тонуса, поскольку на РФ ствола мозга поступают сигналы от зри­тельного и вестибулярного анализаторов и мозжечка. От РФ к мотонейронам спинного мозга и ядер черепных нервов поступают сигналы, организующие положение головы, туловища и т. д.

 1. Восходящая активирующая система - обеспечивает тонизирующее влияние на передние отделы головного мозга.

2.  Нисходящая тормозная система - оказывает тормозные влияния, контролирующие деятельность спинного мозга.

 3. Нисходящая облегчающая система - в которую входят структуры, улучшающие проведение спинальных рефлексов, как моторных, так и секреторных.

       В РФ по разным путям непрерывно поступает поток афферентных импульсов, благодаря которым поддерживается активность восходящих и нисходящих систем. Она оказывает разнообразные влияния на большое количество разнообразных функций организма: дыхательные реакции, вазомоторные и другие вегетативные рефлексы, на тонические и фазные движения, на электрическую активность коры мозга, подкорковых ядер и мозжечка, на сенсорные системы, на состояние сна и бодрствование.

       Влияния РФ на вегетативные функции обусловлены тем, что в ее составе имеются такие образования, как дыхательный, пневмотаксический, сосудодвигательный и др. центры. Кроме того, влияние РФ на вегетатику организма происходят за счет связей РФ со структурами гипоталамуса, который, в свою очередь, влияет на гипофиз. Таким образом, влияние РФ на вегетативные функции может реализовываться и гуморальным путем.

      Влияния РФ на тонус и фазные движения . В 1946 г. Мэгун и Райнис, раздражая вживленными электродами РФ среднего и продолговатого мозга, и измеряя при этом время различных спинальных рефлексов (коленного, сгибательного и др.), а также их силу, регистрируя двигательные акты, вызываемые раздражением соответствующих точек мозга, обнаружили следующее: раздражение вентромедиальной части РФ продолговатого мозга вызывает торможение всех этих видов моторной активности. При раздражении же этой области у децеребрированных кошек ригидные разогнутые конечности становились атоничными, сгибались, т.е. затормаживались имеющие место реакции. После торможения наступало облегчение моторных актов. Такой эффект впервые описан Сеченовым при раздражении мозга у лягушек на уровне зрительных чертогов. Таким образом, Сеченов первым открыл тормозные влияния РФ.

При раздражении латеральной части РФ продолговатого мозга (вокруг тормозящей области) такого эффекта не наблюдалось. В этом случае имело место противоположное явление: при раздражении этих отделов возникали явления, облегчающие протекающие двигательные акты.

Так было доказано существование тормозных и облегчающих нисходящих систем РФ. Эти влияния могут быть как диффузными, не реципрокными, распространяться на все группы волокон, независимо от их расположения и функции, так и отчетливо реципрокными. Тормозные и облегчающие импульсы передаются по различным проводящим путям передних и боковых столбов спинного мозга и могут осуществляться на спинальном уровне. Г. Мэгун (1945—1950), нанося локальные раздражения на РФ продолговатого мозга, нашел, что при раздражении одних точек тормозятся, становятся вялыми рефлексы сгибания передней лапы, коленный, роговичный. При раздражении РФ в других точках про­долговатого мозга эти же рефлексы вызывались легче, были сильнее, т. е. их реализация облегчалась. По мнению Мэгуна, тормозные влияния на рефлексы спинного мозга может оказывать только РФ продолговатого мозга, а облегчающие влияния регулируются всей РФ ствола и спинного мозга. 

 Механизм нисходящих влияний РФ связан как с непосредственным действием на возбудимость мотонейронов спинного мозга, так и влиянием на клетки Реншоу или другие вставочные нейроны, участвующие в замыкании спинномозговых рефлексов. Влияние же РФ на тонус мышц связано с изменением возбудимости гамма-эфферентов спинного мозга, регулирующих напряжение интрафузальных мышечных волокон, и, следовательно, активность всей тонической рефлекторной дуги.

Ретикулярные пути, облегчающие активность моторных систем спинного мозга, берут начало от всех отделов РФ. Пути, идущие от моста, тормозят активность мотонейронов спинного мозга, иннервирующих мышцы-сгибатели, и активируют мотонейроны мышц-разгибателей. Пути, идущие от РФ продолговатого мозга, вызывают противоположные эффекты. Раздражение РФ приводит к тремору, повышению тонуса мышц.

Влияние РФ на афферентные системы организма. Ранее считалось, что ЦНС лишь отвечает на приток афферентных импульсов, но не оказывает на них влияния. В настоящее время установлено, что ЦНС может в известных пределах регулировать приток афферентных импульсов и их передачу в синапсах сенсорных путей.    Ретикулярная формация через гамма-мотонейроны оказывает влияние на интрафузальные мышечные волокна, в которых заложены чувствительные нервные окончания, и тем самым влияет на характер информации, поступающей от этих проприорецепторов в ЦНС. В зависимости от того, в каком состоянии находятся эти чувствительные окончания, мы чувствует большую или меньшую степень растяженности мышц. Кроме того, показано, что РФ влияет на остроту слуха, зрения, на обонятельные ощущения.

Восходящие влияния РФ на кору головного мозга. Если отводить биопотенциалы с поверхности коры нормального бодрствующего человека или животного, то при действии различных по своей модальности внешних раздражителей характерная для покоя медленная высоко амплитудная низкочастотная активность (альфа-ритм) заменяется быстрой низко амплитудной (бета-ритм). Такое изменение электрической активности, наблюдаемое также при переходе от сна к бодрствованию, было названо "реакцией активации" или "реакцией пробуждения".

В 1949 г. Моруцци и Мэгун впервые обнаружили, что раздражение определенных областей мозга вызывает аналогичную реакцию. Эти области включают  РФ продолговатого мозга и медиальную часть покрышки среднего мозга, а также захватывают таламус и задний гипоталамус. Таким образом было показано, что РФ оказывает активирующее восходящее влияние на кору головного мозга. Перечисленные структуры составляют единую функциональную систему - восходящую активирующую - которая играет существенную роль в регуляции функций коры мозга. Полное ее выключение вызывает сон. Изменения в ЭЭГ в виде реакции пробуждения при раздражении РФ обычно бывают диффузными, т.е. наблюдаются по всей коре больших полушарий. Мэгун считает эти влияния неспецифическими, потому что они возникают на обширных территориях коры под влиянием всех периферических воздействий и не зависят от модальности раздражителя.

      Каждое возбуждение, которое начинается на периферии раздражением рецепторов, проводится по чувствительным путям в ЦНС и достигает коры головного мозга прежде всего по специфическим проекционным афферентным системам, т.е. таким, которые проводят к коре возбуждения с наибольшей скоростью и с помощью наименьшего числа последовательно связанных нейронов. Специфические пути идут через специфические ядра таламуса в совершенно определенную зону коры, где и возникает первичный ответ. От этих специфических проекционных систем отходят коллатерали в РФ, где они переключаются на большое число последовательно и параллельно связанных нейронов. Поэтому возбуждение по ним проходить медленнее, чем по специфическим путям. Поскольку РФ связана со всеми разделами коры, возбуждение по неспецифическим путям достигает также всех отделов коры, вызывая там появление т.н. вторичного ответа. Таким образом, под неспецифическими проекционными системами понимаются такие афферентные системы, которые проводят возникающее на периферии возбуждение к коре больших полушарий медленно, через РФ, и к большой площади мозга. Эти импульсы поддерживают тонус нейронов коры. В свою очередь активность ретикулярных механизмов поддерживается возбуждениями, идущими от мозжечка и коры больших полушарий, а также различными гуморальными влияниями.

     В последние годы были получены факты, показавшие, что РФ участвуют также в механизмах генерализации возбуждения в коре больших полушарий. Так, при раздражении определенных ограниченных участков коры можно вызвать возникновение реакции активации на обширных территориях. При этом сходная реакция возникает и в РФ. По-видимому, возбуждение из раздражаемой области коры поступает по кортикоретикулярным связям в РФ, а оттуда по ретикулокортикальным системам достигает обширных областей коры. При этом возбуждаются области в обеих полушариях даже при перерезке мозолистого тела.

Барбитуратный наркоз, а также повреждение РФ приводит к ослаблению сенсорных импульсов. Следовательно, восходящая РФ оказывает тоническое тормозящее влияние на проведение афферентных импульсов, и тем самым регулирует поток информации, идущий в ЦНС по сенсорным путям. Ослабление восприятия различных ощущений при сосредоточенности внимания на каком-либо другом ощущении, а также привыкание к повторяющимся раздражениям объясняется также ретикулярными влияниями (Эрнандец-Пеон, Донозо). Эти ученые регистрировали у человека и у кошки потенциалы, возникающие в ответ на световые и звуковые сигналы при помощи электродов, вживленных в соответствующие зоны мозга. Когда больному предлагали решать арифметические задачи, зрительные первичные вызванные потенциалы сильно ослабевали или исчезали. Когда кошка видела мышь, а также при болевом раздражении, слуховые ответы в ядре улитки ослабевали. Эти эффекты исчезают при блокаде РФ.

      Влияния коры мозга на РФ. Влияние коры мозга на РФ передаются по нисходящим путям. Оканчиваются нисходящие кортикоретикулярные волокна на всем протяжении РФ, но главным образом в ретикулярном гигантоклеточном ядре, в оральном и каудальном ядрах, в ретикулярных ядрах моста, т.е. в тех ядрах РФ, откуда начинаются ретикулоспинальные волокна, а также волокна, проецирующиеся на мозжечок. Раздражение коры мозга вызывает в РФ отчетливые ответы, которые могут влиять на реакции РФ на сенсорные раздражители. Именно раздражение этих зон коры вызывает через РФ возникновение генерализованной реакции активации в других участках коры и изменение поведенческой реакции животного (настораживание со всеми компонентами ориентировочной реакции).

      Нисходящие кортикоретикулярные волокна начинаются главным образом в сенсомоторных, меньше в медиальных и базальных отделах и еще меньше в височной и зрительной областях коры. Эти участки коры точно очерчены, но широко отставлены друг от друга. Большая часть указанных областей относится к т.н. ассоциативным зонам коры. При раздражении этих корковых областей может быть заторможена двигательная активность и изменен мышечный тонус, возникают двигательные и сосудодвигательные реакции. Все эти реакции являются компонентами ориентировочного рефлекса. Более сильное раздражение этих зон вызывает комплексные реакции ужаса (Френч).

     Кора головного мозга оказывает влияние не те же ретикулярные нейроны, которые активируются афферентными импульсами, облегчая или блокируя реакцию этих нейронов на афферентные раздражения. По-видимому, в зависимости от временных отношений между поступающими импульсами происходит либо суммация возбуждений, либо их блокада.

       Таким образом, между корой мозга и РФ имеются двусторонние связи. По этим связям осуществляются взаимные влияния двух важнейших отделов ЦНС. Однако следует помнить, что РФ для коры мозга лишь инструмент, с помощью которого она может моделировать двигательную, сенсорную и секреторную функцию в организме, а также свою собственную активность.

  РФ имеет прямое отношение к регуляции цикла бодрствование — сон. Стимуляция одних структур РФ приводит к развитию сна, стимуляция других вызывает пробуждение. Г. Мэгун и Д. Моруцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору большого мозга.  Возбуждение РФ продолговатого мозга или моста вызывает синхронизацию активности коры большого мозга, появление медленных ритмов в ее электрических показателях, сонное торможение. Возбуждение РФ среднего мозга вызывает противоположный эффект пробуждения: десинхронизацию электрической активности коры, появление быстрых низкоамплитудных β-подобных ритмов в электроэнцефалограмме.

77 Зрительный бугор (thalamus opticus) является своеобразной сенсорной промежуточной станцией - областью переключения всех афферентных путей, идущих к коре больших полушарий . Бугор является средоточием всех рецептивных нейронов ЦНС, выполняя, таким образом, роль высшего подкоркового центра всей чувствительности тела. Нервные связи бугра с соседними областями головного мозга отличаются исключительным обилием и функциональным многообразием. В таламусе оканчиваются нервные волокна большинства сенсорных нейронов, несущих импульсы в кору мозга (происходит переключение сигналов с одних нейронов на другие). В нем совершается анализ происхождения и характера импульсов и их направленная передача в соответствующие сенсорные зоны коры. В известном смысле таламус действует как коммутатор, т.е. как центр перерабатывающий, интегрирующий и направляющий всю сенсорную информацию. Таламус (thalamus, зрительный бугор) — структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга.

Функционально все ядра таламуса делятся на специфические и неспецифические.

Специфические ядра. Волокна от специфических ядер образуют синапсы на ограниченном числе зон коры, а волокна от неспецифических ядер таламуса дают большое количество разветвлений в разных участках коры больших полушарий и вовлекают в процесс возбуждения большое количество корковых нейронов. Специфические ядра имеют прямые связи с определенными участками коры, неспецифические - через подкорковые ядра связаны с разными участками. К специфическим ядрам таламуса относятся латеральное коленчатое тело (место переключения зрительных сигналов), медиальное коленчатое тело ( место переключения слуховых сигналов), заднее вентральное ядро (место переключения сигналов с рецепторов кожи, туловища, проприорецепторов и т.п.), заднее медиальное ядро (висцерорецепция), передние ядра таламуса (вкусовая и обонятельная рецепция). Области представительства отдельных частей тела и внутренних органов перекрываются , отсюда - отраженные боли, зоны Геда и т.п. Кроме вышеперечисленных, к специфическим ядрам таламуса относится большая группа ассоциативных ядер, которые получают импульсы от переключающих ядер таламуса, и передают их в кору мозга и в другие отделы ЦНС.

 Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов. От специфических ядер информация о характере сенсорных стимулов поступает в строго определенные участки III—IV слоев коры большого мозга (соматотопическая локализация). Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса.  Следовательно, уже на уровне таламуса обеспечивается пространственное распределение чувствительности всех сенсорных систем организма, в том числе сенсорных посылок от интерорецепторов сосудов, органов брюшной, грудной полостей.

Неспецифические ядра таламуса многие ученые рассматривают как диэнцефальную часть ретикулярной формации мозгового ствола, однако морфологические и функциональные свойства этой части мозга не похожи на ретикулярные ядра. Джаспер показал, что неспецифическая система таламуса принимает участие в быстрой и кратковременной активации коры в противоположность медленной и длительной активации, осуществляемой ретикулярной формацией мозга. Кроме того, РФ среднего мозга, о работе которой мы будем говорить более подробно на следующей лекции, выполняет функции поддержания тонуса всей коры, а неспецифические ядра таламуса активируют лишь те ее структуры, которые принимают участие в осуществлении конкретных рефлекторных реакций (организация процесса внимания).

Таламус имеет большое значение и как центр формирования ощущений, в частности - как высший центр формирования болевой чувствительности. Это доказывается опытами с раздражением коры и ядер таламуса, клиникой поражений таламуса.

Вместе с тем, зрительные бугры еще являются и центрами непроизвольных выразительных движений, центром эмоциональных проявлений. Разрушение таламуса приводит к выпадению чувствительности и выпадению сокращений мускулатуры лица. непроизвольно сокращающейся при эмоциях - маска страха, гнева, плача и т.п.. Произвольное управление лицевой мускулатурой сохраняется. Если же таламус сохранен, а нарушена моторная зона коры, то наоборот, непроизвольное выражение эмоций остается, произвольное же выпадает.

 Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу уча­ствовать в регуляции и определении функционального состояния организма в целом (подтверждением тому служит наличие в таламусе около 120 разнофункциональных ядер). Ядра образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы: передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга; медиальная — в лобную долю коры; латеральная — в теменную, височную, за­тылочную доли коры. По проекциям определяется и функция ядер. Такое деление не абсолютно, так как одна часть волокон от ядер таламуса идет в строго ограниченные корковые образования, другая — в разные области коры большого мозга.

Неспецифические ядра таламуса представлены срединным центром, парацентральным ядром, центральным медиальным и латеральным, субмедиальным, вентральным передним, парафасцикулярным комплексами, ретикулярным ядром, перивентрикулярной и центральной серой массой. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К неспецифическим ядрам поступают связи из РФ ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свиде­тельствующей о развитии сонного состояния. Нарушение функции неспецифических ядер затрудняет появление веретенообразной активности, т. е. развитие сонного состояния. Сложное строение таламуса, наличие в нем взаимосвязанных специфических, неспецифических и ассоциативных ядер, позволяет ему организовывать такие двигательные реакции, как сосание, жевание, глотание, смех. Двигательные реакции интегрируются в таламусе с вегетативными процессами, обеспечивающими эти движения. Конвергенцию сенсорных стимулов в таламус обусловливает возникновение так называемых таламических неукротимых болей, которые возникают при патологических процессах в самом таламусе.Ассоциативные ядра таламуса представлены передним медиодорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодорсальное — с лобной долей коры, латеральное дорсальное — с теменной, подушка — с ассоциативными зонами теменной и височной долями коры большого мозга. Основными клеточными структурами этих ядер являются мультиполярные, биполярные трехотростчатые нейроны, т. е. нейроны, способные выполнять полисенсорные функции.  На полисенсорных нейронах происходит конвергенция возбуждений разных модальностей, формируется интегрированный сигнал, который затем передается в ассоциативную кору мозга. Нейроны подушки связаны главным образом с ассоциативными зонами те­менной и височной долей коры большого мозга, нейроны латерального ядра — с теменной, нейроны медиального ядра — с лобной долей коры большого мозга.

 Гипоталамус (hypothalamus, подбугорье) — структура промежуточного мозга, входящая в лимбическую систему, организующая эмоциональные, поведенческие, гомеостатические реакции организ­ма.

 Морфофункциональная организация. Гипоталамус имеет боль­шое число нервных связей с корой большого мозга, подкорковыми узлами, зрительным бугром, средним мозгом, мостом, продолговатым и спинным мозгом.

 В состав гипоталамуса входят серый бугор, воронка с нейрогипофизом и сосцевидные тела. Морфологически в нейронных структурах гипоталамуса можно выделить около 50 пар ядер, имеющих свою спе­цифическую функцию. Топографически эти ядра можно объединить в 5 групп: 1) преоптическая группа имеет выраженные связи с конеч­ным мозгом и делится на медиальное и латеральное предоптические ядра; 2) передняя группа, в состав которой входят супраоптическое, паравентрикулярные ядра; 3) средняя группа состоит из нижнемедиального и верхнемедиального ядер; 4) наружная группа включает в себя латеральное гипоталамическое поле и серобугорные ядра; 5) за­дняя группа сформирована из медиальных и латеральных ядер сосце­видных тел и заднего гипоталамического ядра.

 Ядра гипоталамуса имеют мощное кровоснабжение, подтвержде­нием чему служит тот факт, что ряд ядер гипоталамуса обладает изолированным дублирующим кровоснабжением из сосудов артери­ального круга большого мозга (виллизиев круг). На 1 мм2 площади гипоталамуса приходится до 2600 капилляров, в то время как на той же площади V слоя предцентральной извилины (моторной коры) их 440, в гиппокампе — 350, в бледном шаре — 550, в затылочной доле коры большого мозга (зрительной коре) — 900. Капилляры гипоталамуса высокопроницаемы для крупномолекулярных белко­вых соединений, к которым относятся нуклеопротеиды, что объясняет высокую чувствительность гипоталамуса к нейровирусным инфек­циям, интоксикациям, гуморальным сдвигам. 

Нейроны гипоталамуса имеют особенности, которые и определяют специфику функций самого гипоталамуса. К этим особенностям относятся чувствительность нейронов к составу омывающей их кро­ви, отсутствие гематоэнцефалического барьера между нейронами и кровью, способность нейронов к нейросекреции пептидов, нейромедиаторов и др.

 Роль гипоталамуса в регуляции вегетативных функций. Влияние на симпатическую и парасимпатическую регуляцию позволяет ги­поталамусу воздействовать на вегетативные функции организма гу­моральным и нервным путями.

 Раздражение ядер передней группы сопровождается парасимпа­тическими эффектами. Раздражение ядер задней группы вызывает симпатические эффекты в работе органов. Стимуляция ядер средней группы приводит к снижению влияний симпатического отдела ав­тономной нервной системы. Указанное распределение функций ги­поталамуса не абсолютно. Все структуры гипоталамуса способны в разной степени вызывать симпатические и парасимпатические эф­фекты. Следовательно, между структурами гипоталамуса существу­ют функциональные взаимодополняющие, взаимокомпенсирующие отношения.

 В целом за счет большого количества связей, полифункционально­сти структур гипоталамус выполняет интегрирующую функцию веге­тативной, соматической и эндокринной регуляции, что проявляется и в организации его ядрами ряда конкретных функций. Так, в гипота­ламусе располагаются центры гомеостаза, теплорегуляции, голода и насыщения, жажды и ее удовлетворения, полового поведения, страха, ярости, регуляции цикла бодрствование—сон. Все эти центры реали­зуют свои функции путем активации или торможеиия автономного (вегетативного) отдела нервной системы, эндокринной системы, структур ствола и переднего мозга. Нейроны ядер передней группы гипоталамуса продуцируют вазопрессин, или антидиуретический гор­мон (АДГ), окситоцин и другие пептиды, которые по аксонам попада­ют в заднюю долю гипофиза — нейрогипофиз.

 Нейроны ядер срединной группы гипоталамуса продуцируют так называемые рилизинг-факторы (либерины) и ингибирующие факторы (статины), которые регулируют активность передней доли гипофиза — аденогипофиз. В нем образуются такие вещества, как соматотропный, тиреотропный и другие гормоны. Наличие такого набора пептидов в структурах гипоталамуса свиде­тельствует о присущей им нейросекреторной функции.

 Они также обладают детектирующей функцией: реагируют на изменения температуры крови, электролитного состава и осмотиче­ского давления плазмы, количества и состав гормонов крови.

 Олдс (Olds) описал поведение крыс, которым вживляли электроды в ядра гипоталамуса и давали возможность самостоятельно стимули­ровать эти ядра. Оказалось, что стимуляция некоторых ядер приводи­ла к негативной реакции. Животные после однократной самостимуля­ции больше не подходили к педали, замыкающей стимулирующий ток. При самостимуляции других ядер животные нажимали на педаль часами, не обращая внимания на пищу, воду и др.

 Исследования Дельгадо (Delgado) во время хирургических опе­раций показали, что у человека раздражение аналогичных участков вызывало эйфорию, эротические переживания. В клинике показано также, что патологические процессы в гипоталамусе могут сопро­вождаться ускорением полового созревания, нарушением менстру­ального цикла, половой функции.

 Раздражение передних отделов гипоталамуса может вызывать у животных пассивно-оборонительную реакцию, ярость страх, а раздражение заднего гипоталамуса вызывает активную агрессию.

 Раздражение заднего гипоталамуса приводит к экзофтальму, расширению зрачков, повышению кровяного давления, сужению про­света артериальных сосудов, сокращениям желчного, мочевого пу­зырей. Могут возникать взрывы ярости с описанными симпатиче­скими проявлениями. Уколы в области гипоталамуса вызывают глюкозурию, полиурию. В ряде случаев раздражение вызывало на­рушение теплорегуляции: животные становились пойкилотермными, у них не возникало лихорадочное состояние.

 Гипоталамус является также центром регуляции цикла бодрство­вание — сон. При этом задний гипоталамус активизирует бодрствова­ние, стимуляция переднего вызывает сон. Повреждение заднего гипо­таламуса может вызвать так называемый летаргический сон.

 В гипоталамусе и гипофизе образуются также нейрорегуляторные пептиды — энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса и т. д.

Мотивация (П.К. Анохин) – побуждение, влечение, стремление организма к удовлетворению потребностей, которое необходимо для поддержания постоянства гомеостаза. Постоянство гомеостаза – необходимое условие нормального протекания метаболизма в организме.

Мотивации подразделяют на биологические (пищевые, оборонительные) и социальные (стремление к власти, богатству, образованию и т.д.).

В области средних и боковых ядер гипоталамуса имеются группы нейронов рассматриваемых как центры голода и насыщения. Например, при голодании в крови происходит снижение содержания питательных веществ. Это приводит к активации определенных гипоталамических нейронов и развитию сложных поведенческих реакций, направленных на утоление чувства голода.

В гипоталамусе расположены такие центры как центр жажды, страха и ярости, удовлетворения, были открыты в экспериментах с вживлением электродов на лабораторных животных в 50-х гг. прошлого столетия (Хесс, Джеймс Олс и коллеги)

В гипоталамусе обнаружены нейроны ответственные за цикл сон-бодрствование, полового поведения. Так, во время операций Дельгадо раздражал ядра гипоталамуса, что вызывало у пациентов эйфорию, эротические переживания. Развитие патологических процессов в гипоталамусе может сопровождаться нарушением менструального цикла, ускорением полового созревания и т.д.

Эмоция – возбуждение, возникающее в виде субъективных переживаний (оценки) в ответ на раздражение из внешней или внутренней среды. Эмоции подразделяют на положительные и отрицательные.

Необходимо отметить, что без участия гипоталамуса не может быть реализована ни одна мотивация. Эксперименты на животных показали, что при разрушении гипоталамуса исчезают мотивации, животное перестает реализовывать оборонительные, пищевые, родительские и другие реакции, развивается эмоциональная тупость.

Дополнительно: Гипоталамус. Велика роль гипоталамуса, как в развитии мотивационного поведения, так и в развитии связанных с ним эмоций. Гипоталамус, где сосредоточены двойные центры, регулирующие запуск и прекращение основных типов врожденного поведения, большинством исследователей рассматривается как исполнительная система, в которой интегрируются вегетативные и двигательные проявления мотивации, и в том числе эмоций. В составе эмоции принято выделять собственно эмоциональное переживание и его соматическое (относящееся к стенке полости тела, т.е. ко всем частям тела, за исключением внутренних органов) и висцеральное (относящееся к внутренним органам) выражение. Возможность их появления независимо друг от друга указывает на относительную самостоятельность их механизмов. Диссоциация эмоционального переживания и его выражения в двигательных и вегетативных реакциях обнаружена при некоторых поражениях ствола мозга. Она выступает в так называемых псевдоэффектах: интенсивные мимические и вегетативные реакции, характерные для плача или смеха, могут протекать без соответствующих субъективных ощущений.

Анохин П.К. считал наиболее вероятным нервным механизмом усиления предсуществующих скрытых доминант действие восходящих активирующих влияний на кору со стороны гипоталамуса и ретикулярной формации, которые «питают» данную доминанту.

Электрическое раздражение определенных нервных центров, расположенных в гипоталамической области, сопровождается не только возникновением первичных мотиваций, но и соответствующим поведением, ведущим к их удовлетворению.

Наблюдения показали, что эмоциональные поведенческие реакции, вызванные электрической стимуляцией гипоталамуса, могут не только быть тождественны действиям и проявлениям, характерным для естественного поведения, но и иметь целенаправленное содержание. Раздражение перивентрикулярной зоны, перифорникальных структур вызывает яркие реакции защитного типа, не отличающиеся от естественных проявлений эмоционального поведения. У кролика агрессивно-оборонительная реакция при ярости возникала от раздражения области перивентрикулярного ядра до области переднего гипоталамуса (уровня зрительного перекреста).

Особый интерес для физиологии мотиваций представляют эксперименты с самораздражением. Оказалось, что раздражение определенных структур головного мозга (прежде всего ядер гипоталамуса) через вживленные электроды приводит к тому, что животное начинает нажатием рычага само включать ток, чтобы наносить себе раздражение. Эти мотивации обладают значительной энергетической силой и животные готовы преодолевать сложные препятствия ради достижения эффекта самораздражения.

В ряде опытов были обнаружены интересные аспекты самостимуляции. Слабое раздражение латерального гипоталамуса вызывает генерализованную поисковую активность без обращения к находящимся в камере целевым объектам – пище, воде и т.д. Только при усилении интенсивности раздражения эти внешние стимулы становятся эффективными: животное начинает есть, иногда пить и т.д. При дальнейшем усилении ритмического или постоянного тока возникает реакция самораздражения.

Мотивационные возбуждения существенно меняют конвергентные и дискриминационные способности нейронов разных отделов мозга. Например, раздражение пищевого центра латерального гипоталамуса приводило к тому, что нейроны сенсомоторной коры, ранее не отвечавшие на световые, звуковые и гуморальные раздражения, приобрели способность реагировать на них. С другой стороны, нейроны коры, не отвечавшие ранее на введение кроликам морковного сока, начинали реагировать на эти раздражения после стимуляции центра «голода» латерального гипоталамуса. Создается впечатление, что мотивационное возбуждение «настраивает» нейроны различных областей мозга на подкрепляющие воздействия. При повышении мотивации увеличивается эффективность сохранения следов памяти.

78 Представляет собой функциональное объединение структур мозга, участвующих в организации эмоционально-мотивационного поведения (пищевой, половой, обонятельный инстинкты).

К лимбической системе относятся такие образования древней и старой коры, как обонятельные луковицы, гиппокамп, поясная извилина, зубчатая фасция, парагиппокампальная извилина, а также подкорковое миндалевидное ядро и переднее таламическое ядро.

1.Формирование эмоций. При операциях на мозге было установлено, что раздражение миндалевидного ядра вызывает появление у пациентов беспричинных эмоций страха, гнева, ярости. Раздражение некоторых зон поясной извилины ведет к возникновению немотивированной радости или грусти. А так как лимбическая система участвует и в регуляции функций висцеральных систем, то все вегетативные реакции возникающие при эмоциях (изменение работы сердца, кровяного давления, потоотделения) также осуществляются ею.

Гипоталамус при этом представляется структурой, ответственной преимущественно за вегетативные проявления эмоций - изменение частоты и силы сердечных сокращений, артериального давления, дыхания.

2. Формирование мотиваций. Она участвует в возникновении и организации направленности мотиваций. Миндалевидное ядро регулирует пищевую мотивацию. Некоторые его области тормозят активность центра насыщения и стимулируют центр голода гипоталамуса. Другие действуют противоположным образом. За счет этих центров пищевой мотивации миндалевидного ядра формируется поведение на вкусную и невкусную пищу. В нем же есть отделы регулирующие половую мотивацию. При их раздражении возникает гиперсексуальность и выраженная половая мотивация.

3. Участие в механизмах памяти. В механизмах запоминания особая роль принадлежит гиппокампу. Во-первых, он классифицирует и кодирует всю информацию, которая должна быть заложена в долговременной памяти. Во-вторых, обеспечивает извлечение и воспроизведение нужной информации в конкретный момент. Предполагают, что способность к обучению определяется врожденной активностью соответствующих нейронов гиппокампа.

4. Регуляция вегетативных функций и поддержание гомеостаза. ЛС называют висцеральным мозгом, так как она осуществляет тонкую регуляцию функций органов кровообращения, дыхания, пищеварения, обмен веществ и т.д. Особое значение ЛС состоит в том, что она реагирует на небольшие отклонения параметров гомеостаза. Она влияет на эти функции через вегетативные центры гипоталамуса и гипофиз.

Дополнительно: Лимбическая система представляет собой функциональное объединение структур мозга, участвующих в организации эмоционально-мотивационного поведения, сложных форм поведения, таких как инстинкты, смена фаз цикла «сон-бодрствование». Лимбическая система оказывает регулирующее влияние на КБП и подкорковые образования, устанавливая необходимое соответствие уровней их активности. Лимбическую систему рассматривают как «помощника» гипоталамуса при реализации эмоций и мотиваций.

Структуры лимбической системы:

1. Древняя кора (палеокортекс): обонятельные луковицы, обонятельный бугорок, прозрачная перегородка

2. Старая кора (архикортекс): гиппокамп, зубчатая фасция, поясная извилина

3. Структуры островковой коры и парагиппокампова извилина

4. Подкорковые структуры: миндалины мозга, ядра перегородки, переднее таламическое ядро, мамилярные тела, гипоталамус.

Особенностью лимбической системы является наличие простых двусторонних связей и сложных путей, в виде множества функциональных замкнутых кругов, между ее структурами. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе и, тем самым, сохранения в ней единого состояния и навязывания этого состояния другим системам мозга.

Например, круг Пейпеса включает структуры: гиппокамп, мамиллярные тела, передние ядра гипоталамуса, кора поясной извилины, парагиппокампова извилина, гиппокамп. Этот функциональный круг имеет отношение к памяти и процессам обучения.

Круги разного функционального назначения связывают лимбическую систему со многими структурами ЦНС, что позволяет ей реализовывать функции, специфика которых определяется включенной дополнительной структурой. Так, включение хвостатого ядра в один из кругов лимбической системы определяет ее участие в организации тормозных процессов ВНД.

Функции лимбической системы

Лимбическая система участвует в реализации уровня реакции вегетативной и соматической систем при эмоционально-мотивационой деятельности, к регулированию уровня внимания, восприятия, воспроизведения эмоционально значимой информации

Лиамбическая система определяет выбор и реализацию адаптационных форм поведения, поддержание гомеостазиса, обеспечивает создание эмоционального фона, формирование и реализацию процессов ВНД.

Древняя и старая кора,входящие в лимбическую систему имеют отношение к самому древнему анализатору – обонятельному, котрый является неспецифическим активатором всех видов деятельности (ароматерапия, запах и симпатии).

Лимбическую систему называют «висцеральным мозгом», так как она связана с регуляцией деятельности внутренних органов, например, миндалевидные тела, перегородка и обонятельный мозг при возбуждении изменяют активность вегетативных систем организма в соответствии с условиями окружающей среды.

Дополнительно: Структура лимбической системы. Передний мозг, интегративная деятельность которого обеспечивает целенаправленное поведение, можно разделить на неокортекс, (который управляет пространственно-временными соотношениями организма со средой, мышлением и стереогнозисом) и лимбическую систему,которая обеспечивает эмоциональный настрой и побуждение к действию (мотивации и эмоции), а также такие процессы, как научение и память. Лимбическая система придает информации, поступающей из среды, то особое значение, которое она имеет для каждого человека.

Лимбическая система состоит из филогенетически старых отделов переднего мозга и из производных подкорковых структур. Сюда входят зоны мозга, отделяющие неокортекс от гипоталамуса (поясная и гиппокампова извилина, обонятельный мозг (rhynencеphalon), миндалина, септальные ядра и переднее таламическое ядро. Многие исследователи причисляют к лимбической системе преоптическое ядро, гипоталамус и мамиллярные тела. Афферентные и эфферентные связи этих структур разнообразны как в восходящем, так и в нисходящем направлении.К корковым областям лимбической системы относятся: гиппокамппарагиппокамповая извилина,поясная извилина и некоторые другие. Подкорковые структуры включают: миндалинысептальные ядра,переднее таламическое ядро. Следует отметить, что многие исследователи относят к лимбической системе гипоталамус, преоптическую область и мамиллярные телаВ любом случае афферентные и эфферентные связи структур лимбической системы с другими отделами мозга чрезвычайно разнообразны.

Особенностью лимбической системы является то, что между ее структурами имеются простые двусторонние связи и сложные пути, образующие множество замкнутых кругов. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе и тем самым для сохранения в ней единого состояния и навязывание этого состояния другим системам мозга.

В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную специфику. К ним относится круг Пейпеца (гиппокамп - сосцевидные тела - передние ядра таламуса - кора поясной извилины -парагиппокампова извилина - гиппокамп). Этот круг имеет отно­шение к памяти и процессам обучения.

Другой круг, круг Наута (миндалевидное тело - гипоталамус - мезенцефальные структуры - миндалевидное тело) регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения.

Функциональное значение лимбической системы связано с автономным обеспечением всех поведенческих и эмоциональных реакций организма, с ее ролью в организации эмоционально-мотивационного поведения, таких как пищевое, половое, оборонительное. Эта система участвует в организации цикла бодрствование—сон. В опытах на животных установлено, что электрическое раздражение лимбической системы сопровождается изменениями эмоционального характера и автономных функций: ритма дыхания и частоты сердечных сокращений. Именно поэтому лимбическую систему иногда называют висцеральным мозгом,т.е. высшим центром управления внутренними процессами организма человека.

Лимбическая система имеет непосредственное отношение к эмоциям, как чувствам и настроениям, проявляющимся в поведении  и реакциях со стороны автономной и эндокринной систем. Она обусловливает эмоциональный настрой человека, побуждения к действию (мотивации), процессы научения и памяти.Лимбическая система придает информации от внутренней и внешней среды то особое значение, которое она имеет для каждой личности и тем самым определяет ее целенаправленную деятельность.

Считается, что образная (иконическая) память формируется кортико-лимбико-таламо-кортикальным кругом. Круги разного функционального назначения связывают лимбическую систему со многими структурами центральной нервной системы, что позволяет последней реализовать функции, специфика которых определяется включенной дополнительной структурой. Например, включение хвостатого ядра в один из кругов лимбической системы определяет ее участие в организации тормозных процессов высшей нервной деятельности.

Лимбическая система контролирует эмоциональное поведение, управляя тем самым всей совокупностью внутренних факторов, мотивирующих деятельность животных и человека (видоспецифическое поведение). При двусторонней амигдалэктомии (удалении миндалин мозга) обезьяны утрачивают способность к социальному внутригрупповому поведению. Такие животные не могут дать социальную оценку зрительной, слуховой и обонятельной информации, необходимой для группового поведения. такие обезьяны избегают остальных членов группы и производят впечатление встревоженных и неуверенных в себе животных, обладающих "психической слепотой" (неспособность отличить съедобные от несъедобных продуктов, нарушение пищевых реакций, гиперсексуальность).

Такие расстройства связаны с нарушением двусторонней связи между височными долями коры и гипоталамусом. Клинические и экспериментальные данные свидетельствуют о том, что в височно-амигдалярной системе содержатся важные нервные образования, отвечающие за приобретенное мотивационное поведение и эмоции. В этой системе происходит сопоставление сложной сенсорной информации с памятью (ранее накопленной информацией). В результате этого поступающая информация приобретает для организма значимость и в дальнейшем через миндалины приводит к запуску тех эмоциональных и поведенческих реакций, которые в прошлом оказались полезными в аналогичных условиях и включают гипоталамические механизмы вегетативного обеспечения этих реакций.

Функции гиппокампа и миндалевидных тел. Наиболее полифункциональными образованиями лимбической системы являются гиппокамп и миндалевидные тела. Физиология этих структур наиболее изучена.

Гиппокамп (hippocampus) расположен в глубине височных долей мозга и является основной структурой лимбической системы. Морфологически гиппокамп представлен стереотипно повторяющимися модулями, связанными между собой и с другими структурами. Связь модулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических потенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гиппокампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональность.

Выраженными и специфическими являются электрические процессы в гиппокампе. Активность здесь чаще всего характеризуется быстрыми бета-ритмами (14—30 в секунду) и медленными тета-ритмами (4—7 в секунду). Если с помощью фармакологических методов в новой коре ослабить десинхронизацию на новое раздражение, то в гиппокампе затрудняется возникновение тета-ритма.  Значение тета-ритма заключается в том, что он отражает реакцию гиппокампа, а тем самым — его участие в ориентировочном рефлексе, реакциях настороженности, повышения внимания, в динамике обучения. Тета-ритм в гиппокампе наблюдается при высоком уровне эмоционального напряжения — страхе, агрессии, голоде, жажде. Вызванная активность в гиппокампе возникает на раздра­жение различных рецепторов и любой из структур лимбической системы.

Разносенсорные проекционные зоны в гиппокампе перекрываются. Это обусловлено тем, что большинство нейронов гиппокампа характеризуется полисенсорностью, т. е. способностью реагировать на световые, звуковые и другие виды раздражений. Нейроны гиппокампа отличаются выраженной фоновой активностью. В ответ на сенсорное раздражение реагирует до 60% нейронов гиппокампа.

Повреждение гиппокампа у человека нарушает память на собы­тия, близкие к моменту повреждения (ретроантероградная амнезия). Нарушаются запоминание, обработка новой информации, различие пространственных сигналов. Повреждение гиппокампа ведет к снижению эмоциональности, инициативности, замедлению скорости ос­новных нервных процессов, повышаются пороги вызова эмоциональных реакций.

Миндалевидное тело (corpus amygdoloideum), миндалина — подкорковая структура лимбической системы, расположенная в глубине височной доли мозга. Нейроны миндалины разнообразны по форме, функциям и нейрохимическим процессам в них. Функции миндалины связаны с обеспечением оборонительного поведения, вегетативными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения.  Миндалины реагируют многими своими ядрами на зрительные, слуховые, интероцептивные, обонятельные, кожные раздражения, причем все эти раздражения вызывают изменение активности любого из ядер миндалины, т. е. ядра миндалины полисенсорны.

Реакция  на внешние раздражения длится, как правило, до 85 мс, т. е. значительно меньше, чем реакция на подобные же раздражения новой коры. Раздражение ядер миндалевидного тела создает выраженный парасимпатический эффект на деятельность сердечно-сосудистой, дыхательной систем, приводит к понижению (редко к повышению) кровяного давления, урежению сердечного ритма, нарушению проведения возбуждения по проводящей системе сердца, возникновению аритмий и экстрасистолий. При этом сосудистый тонус может не изменяться. Урежение ритма сокращений сердца при воздействии на миндалины отличается длительным скрытым периодом и имеет длительное последействие. Раздражение ядер миндалины вызывает угнетение дыхания, иногда кашлевую реакцию.

При искусственной активации миндалины появляются реакции принюхивания, облизывания, жевания, глотания, саливации, изменения перистальтики тонкой кишки, причем эффекты наступают с большим латентным периодом (до 30—45 с после раздражения). Стимуляция миндалин на фоне активных сокращений желудка или кишечника тормозит эти сокращения. Разнообразные эффекты раздражения миндалин обусловлены их связью с гипоталамусом, который регулирует работу внутренних органов.

Повреждение миндалины у животных снижает адекватную подготовку автономной нервной системы к организации и реализации поведенческих реакций, приводит к гиперсексуальности, исчезновению страха, успокоению, неспособности к ярости и агрессии. Животные становятся доверчивыми. Например, обезьяны с поврежденной миндалиной спокойно подходят к гадюке, вызывавшей ранее у них ужас, бегство. Видимо, в случае повреждения миндалины исчезают некоторые врожденные безусловные рефлексы, реализующие память об опасности.

79 зальные ядра головного мозга располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. К базальным ядрам относят хвостатое ядро , скорлупу , ограду , бледный шар.

При недостатке дофамина в хвостатом ядре (например, при дисфункции черного вещества) бледный шар растормаживается, активизирует спинно-стволовые системы, что приводит к двигательным нарушениям в виде ригидности мышц. Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условнорефлекторная деятельность, двигательная активность . При воздействиях на хвостатое ядро, помимо нарушений высшей нервной деятельности, отмечаются расстройства движения.

Раздражение бледного шара с помощью вживленных электродов вызывает сокращение мышц конечностей, активацию или торможение γ-мотонейронов спинного мозга. Повреждение бледного шара вызывает у людей гипомимию, маскообразность лица, тремор головы, конечностей (причем этот тремор исчезает в покое, во сне и усиливается при движениях), монотонность речи. При повреждении бледного шара наблюдается миоклония — быстрые подергивания мышц отдельных групп или отдельных мышц рук, спины, лица.

В первые часы после повреждения бледного шара в остром опыте на животных резко снижалась двигательная активность, движения характеризовались дискоординацией, отмечалось наличие незавершенных движений, при сидении — поникшая поза. Начав движение, животное долго не могло остановиться. У человека с дисфункцией бледного шара затруднено начало движений, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные движения рук при ходьбе. Стимуляция ограды вызывает ориентировочную реакцию, поворот головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения. Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук. Стимуляция ограды во время еды тормозит процесс поедания пищи.

Большое значение в регуляции мышечного тонуса имеют базальные ядра - бледный шар и полосатое тело, которые образуют стриопаллидарную систему. Эти структуры регулируют активность всех нижележащих отделов ЦНС, участвующих в регуляции мышечного тонуса, обеспечивая адекватное перераспределение тонуса мышц при различных видах деятельности. При поражении экстрапирамидной системы, составной частью которой являются базальные ядра, возникают нарушения регуляций тонуса мускулатуры, что приводит к развитию так называемых дрожательных параличей (паркинсонизму, атетозу, хорее и др.).

Дополнительно: Основные структуры базальных ядер.

Базальные ядра — это хвостатое ядро {nucleus caudatus), скорлупа (putamen) и бледный шар (globulus pallidus); некото­рые авторы относят к базальным ядрам ограду (claustrum). Все эти четыре ядра называют полосатым телом {corpus stri-atum). Выделяют также стриатум {stria-tum) — это хвостатое ядро и скорлупа. Бледный шар и скорлупа образуют че-чевицеобразное ядро (nukleus lentioris). Стриатум и бледный шар выделяют как стриопаллидарную систему.

Функциональные связи базальных ядер. У базальных ядер нет входа от спинно­го мозга, но есть прямой вход от коры

больших полушарий. Основное влияние базальных ядер направлено посредством таламуса на двигательные области коры большого мозга. Кроме того, они уча­ствуют в выполнении эмоциональных и познавательных (когнитивных) функ­ций.

Возбуждающие пути идут, в основ­ном, к стриатуму: от всех областей коры большого мозга (прямо и через таламус), от неспецифических ядер таламуса, от черного вещества (средний мозг). Сам стриатум оказывает в основном тормоз­ное и, частично, возбуждающее влия­ние на бледный шар. От бледного шара идет самый важный путь в двигательные вентральные ядра таламуса, от них воз­буждающий путь идет в двигательную кору большого мозга. Часть волокон от стриатума идет в мозжечок и к цен­трам ствола мозга (РФ, красное ядро и далее — в спинной мозг). Тормозящие пути от стриатума идут к черному веще­ству и после переключения — к ядрам таламуса.

Двигательные функции базальных ядер

В целом базальные ядра, имея двусторонние связи с корой боль­шого мозга, таламусом, ядрами ствола мозга, участвуют в создании программ целенаправленных движений с учетом доминирующей мотивации. При этом нейроны стриатума оказывают тормоз­ное влияние (медиатор — ГАМК) на нейроны черного вещества. В свою оче­редь, нейроны черного вещества (меди­атор — дофамин) оказывают модулиру­ющее влияние (тормозное и возбуждаю­щее) на фоновую активность нейронов стриатума. При нарушении дофаминер-гических влияний на базальные ядра на­блюдаются двигательные расстройства типа паркинсонизма, при которых резко падает концентрация дофамина в обо их ядрах стриатума. Наиболее важные функции базальных ядер выполняют стриатум и бледный шар.

Функции с тр и ату м а. Уча­ствует в осуществлении поворота головы и туловища и ходьбы по кругу, которые входят в структуру ориентировочного поведения. Поражение хвостатого ядра при заболеваниях и при разрушении в эксперименте ведет к насильственным, избыточным движениям (гиперкинезы: хорея и атетоз).

Функции бледного шара. Оказывает модулирующее влияние на двигательную кору, мозжечок, РФ, красное ядро. При стимуляции бледно­го шара у животных преобладают эле­ментарные двигательные реакции в виде сокращения мышц конечностей, шеи и лица, активация пищевого поведения. Разрушение бледного шара сопровож­дается снижением двигательной актив­ности — возникает адинамия (блед­ность двигательных реакций), а также ему (разрушению) сопутствует развитие сонливости, «эмоциональной тупости», что затрудняет осуществление имею­щихся условных рефлексов и ухудшает выработку новых (ухудшает кратковре­менную память).

80Строение коры мозга. Кора больших полушарий головного мозга является наиболее молодым в филогенетическом отношении отделом мозга. Она представляет собой слой серого вещества, толщина которого колеблется от 1,5 до 3 мм. За счет большого количества складок площадь коры головного мозга составляет 1450-1700 кв.см. Кора больших полушарий является высшим интегративным центром регуляции процессов, протекающих в организме. Это доказывается характерными нарушениями, которые наблюдаются после декортикации. Такие животные уподобляются животным, находящимся на более низких стадиях эволюции. Причем чем более развито и совершенно животное, тем на большее количество ступеней эволюционного развития оно опускается. Максимальная деградация наблюдается у человека, лишенного коры (врожденно или в результате травмы), что, как правило, несовместимо с жизнью.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Ост­ровок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга. Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимо­действия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.

Число нейронов коры превышает 10 млрд. В составе коры имеются пирамидные, звездчатые, веретенообразные нейроны. Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков; аксон пирамидного нейрона, как правило, идет через белое вещество в другие зоны коры или в структуры ЦНС. Звездчатые клетки имеют короткие хорошо ветвящиеся дендриты и короткий аскон, обеспечивающий связи нейронов в пределах самой коры большого мозга. Веретенообразные нейроны обеспечивают вертикальные или го­ризонтальные взаимосвязи нейронов разных слоев коры.

Кора большого мозга имеет преимущественно шестислойное строение

Слой I — верхний молекулярный, представлен в основном ветвлениями восходящих дендритов пирамидных нейронов, среди ко­торых расположены редкие горизонтальные клетки и клетки-зерна, сюда же приходят волокна неспецифических ядер таламуса, регу­лирующие через дендриты этого слоя уровень возбудимости коры большого мозга.

Слой II — наружный зернистый, состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре большого мозга, т. е. имеющих отношение к памяти.

Слой III — наружный пирамидный, формируется из пирамидных клеток малой величины и вместе со II слоем обеспечивают корко-корковые связи различных извилин мозга.

Слой IV — внутренний зернистый, содержит преимущественно звездчатые клетки. Здесь заканчиваются специфические таламокортикальные пути, т. е. пути, начинающиеся от рецепторов анализаторов.

Слой V — внутренний пирамидный, слой крупных пирамид, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг.

Слой VI — слой полиморфных клеток, большинство нейронов этого слоя образуют кортико-таламические пути.

        Представление о локализации функций в коре. Первыми получили многие сведения о локализации функций в коре мозга морфологи и клиницисты. Морфологи показали, что цитоархитектоника коры изменяется не только по вертикали, но и по горизонтали. Это значит, что в разных участках коры она имеет специфическое строение. Морфологические особенности строения различных отделов коры мозга позволили разделить ее на несколько зон (карта Бродмана - 50 полей).

      Клиницисты доказали, что у человека многие участки коры больших полушарий имеют строго локализованные функции. Так, в области третьей левой лобной извилины расположен участок, относящийся в функции речи, в височной доле - центр слуха, в затылочной - зрения. Однако, в силу большой пластичности мозга и за счет перекрытия границ специфических зон в случае повреждения даже больших участков мозга функции этих отделов постепенно могут восстанавливаться.

Особенностью корковых полей является экранный принцип их функционирования. Этот принцип заключается в том, что рецептор проецирует свой сигнал не на один нейрон коры, а на поле нейронов, которое образуется их коллатералями и связями. В результате сигнал фокусируется не точка в точку, а на множестве разнообразных нейронов, что обеспечивает его полный анализ и возможность передачи в другие заинтересованные структуры. Так одно волокно, приходящее в зрительную область коры, может активировать зону размером 0,1 мм. Это значит, что один аксон распределяет свое действие на более чем 5000 нейронов.

Входные (афферентные) импульсы поступают в кору снизу, поднимаются к звездчатым и пирамидным клеткам III—V слоев коры. От звездчатых клеток IV слоя сигнал идет к пирамидным нейронам III слоя, а отсюда по ассоциативным волокнам — к другим полям, об­ластям коры большого мозга. Звездчатые клетки поля 3 переключают сигналы, идущие в кору, на пирамидные нейроны V слоя, отсюда об­работанный сигнал уходит из коры к другим структурам мозга.

В коре входные и выходные элементы вместе со звездчатыми клетками образуют так называемые колонки — функциональные единицы коры, организованные в вертикальном направлении. Диаметр колонки около 500 мкм и определяется она зоной распределения коллатералей восходящего афферентного таламокортикального волокна. Соседние колонки имеют взаимосвязи, орга­низующие участки множества колонок в организации той или иной реакции. Возбуждение одной из колонок приводит к торможению соседних.

Как уже упоминалось, разные области коры большого мозга имеют разные поля, определяющиеся по характеру и количеству нейронов, толщине слоев и т. д. Наличие структурно различных полей предполагает и разное их функциональное предназначение

       В настоящее время принято разделять кору на сенсорную, двигательную и ассоциативную.

 Сенсорные области коры. Корковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Корковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисенсорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем.

Кожная рецептирующая система, таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое соматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на средние — туловища, на нижние отделы — руки, головы.

На заднюю центральную извилину в основном проецируются болевая и температурная чувствительность. В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чувствительности, осуществляется более сложный анализ: локализация раздражения,  стереогнозис.

Зрительная система представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга приводит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память).

Слуховая система проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.

Обонятельная система проецируется в области переднего конца гиппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния). 

Вкусовая система проецируется в гиппокампальной извилине по соседству с обонятельной областью коры (поле 43).        Первичная соматосенсорная кора обеспечивает восприятие только простых ощущений, а анализ всей полноты сенсорного восприятия осуществляется многими отделами мозга в тесном взаимодействии с соматосенсорными зонами (при раздражении таких зон слышим звук, но не слово или музыкальную фразу). При разрушении первичных сенсорных зон возникает полная неспособность анализировать поступающую информацию (слепота, глухота и пр.).

       По всей границе с первичными сенсорными зонами (на расстоянии 1-5 см) располагаются зоны, называемые вторичными сенсорными зонами. Их разрушение вызывает заметное снижение способности мозга анализировать различные характеристики образов (потеря способности понимать значение слов, интерпретировать зрительные образы и т.п.). Особенно большое значение в этом плане имеет височная доля и угловая извилина. После обширного повреждения этих областей человек слышит и может различать слова, но не способен связать эти слова в законченную мысль, не может понимать их смысла. Электрическое раздражение этих областей у человека, находящегося в сознании, вызывает возникновение сложных мыслей, включая те, которые содержатся в его памяти. Отсюда следует, что у человека сложные образы, фиксированные в памяти, сохраняются в височной доле и угловой извилине.

Моторные области коры.   Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (поле 4) вызывает двигательную реакцию. В то же время признано, что двигательная область является анализаторной. В передней центральной извилине зоны, раздражение которых вызывает движение, представлены по соматотопическому типу, но вверх ногами: в верхних отделах извилины — нижние конечности, в нижних — верхние. Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обес­печивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры. В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области. Двигательная область коры, как никакая другая, имеет большое количество связей с другими анализаторами, чем, видимо, и обус­ловлено наличие в ней значительного числа полисенсорных нейронов.

 Ассоциативные области коры. Все сенсорные проекционные зоны и моторная область коры занимают менее 20% поверхности коры большого мозга. Остальная кора составляет ассоциативную область. Каждая ассоциативная область коры связана мощными связями с несколькими проекционными областями. Считают, что в ассоциативных областях происходит ассоциация разносенсорной информации. В результате формируются сложные элементы сознания. Ассоциативные области мозга у человека наиболее выражены в лобной, теменной и височной долях.  Каждая проекционная область коры окружена ассоциативными областями. Нейроны этих областей чаще полисенсорны, обладают большими способностями к обучению. Так, в ассоциативном зри­тельном поле 18 число нейронов, «обучающихся» условнорефлекторной реакции на сигнал, составляет более 60% от числа фоновоактивных нейронов. Для сравнения: таких нейронов в проекционном поле 17 всего 10—12%. Повреждение поля 18 приводит к зрительной агнозии. Больной видит, обходит предметы, но не может их назвать.

В теменной ассоциативной области коры формируются субъективные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря сопоставлению соматосенсорной, проприоцептивной и зрительной информации.

Лобные ассоциативные поля имеют связи с лимбическим отделом мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов.

Первой и наиболее характерной чертой ассоциативных областей коры является мультисенсорность их нейронов, причем сюда поступает не первичная, а достаточно обработанная информация с выделением биологической значимости сигнала. Это позволяет формировать программу целенаправленного поведенческого акта. Вторая особенность ассоциативной области коры заключается в способности к пластическим перестройкам в зависимости от значимости поступающей сенсорной информации. Третья особенность ассоциативной области коры проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обучения, памяти. .

Распределение функций по областям мозга не является абсолютным. Установлено, что практически все области мозга имеют полисенсорные нейроны, т. е. нейроны, реагирующие на различные раздражения. Например, при повреждении поля 17 зрительной области его функцию могут выполнять поля 18 и 19. Кроме того, разные двигательные эффекты раздражения одного и того же двигательного пункта коры наблюдаются в зависимости от текущей моторной деятельности.

Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций еще не жестко закреплено, функция утраченной области практически полностью восстанавливается, т. е. в коре имеются проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры.

Морфофункциональные особенности коры мозга. Важной особенностью коры большого мозга является ее способность длительно сохранять следы возбуждения. Следовые процессы в спинном мозге после его раздражения сохраняются в течение секунды; в подкорково-стволовых отделах (в форме сложных двигательно-координаторных актов, доминантных установок, эмоциональных состояний) длятся часами; в коре мозга следовые процессы могут сохраняться по принципу обратной связи в течение всей жизни. Это свойство придает коре исключительное значение в механизмах ассоциативной переработки и хранения информации, накопления базы знаний. Сохранение следов возбуждения в коре проявляется в колебаниях уровня ее возбудимости; эти циклы длятся в двигательной области коры 3—5 мин, в зрительной — 5—8 мин.

Основные процессы, происходящие в коре, реализуются двумя состояниями: возбуждением и торможением. Эти состояния всегда реципрокны. Они возникают, например, в пределах двигательного анализатора, что всегда наблюдается при движениях; они могут возникать и между разными анализаторами. Тормозное влияние одного анализатора на другие обеспечивает сосредоточенность внимания на одном процессе. Реципрокные отношения активности очень часто наблюдаются в активности соседних нейронов.

Отношение между возбуждением и торможением в коре проявляется в форме так называемого латерального торможения. При латеральном торможении вокруг зоны возбуждения формируется зона заторможенных нейронов (одновременная индукция) и она по протяженности, как правило, в два раза больше зоны возбуждения. Латеральное торможение обеспечивает контрастность восприятия, что в свою очередь позволяет идентифицировать воспринимаемый объект.

Помимо латерального пространственного торможения, в нейронах коры после возбуждения всегда возникает торможение активности и наоборот, после торможения — возбуждение — так называемая последовательная индукция.

В тех случаях когда торможение не в состоянии сдерживать возбудительный процесс в определенной зоне, возникает иррадиация возбуждения по коре. Иррадиация может происходить от нейрона к нейрону, по системам ассоциативных волокон I слоя, при этом она имеет очень малую скорость — 0,5—2,0 м/с. В другом случае иррадиация возбуждения возможна за счет аксонных связей пирамидных клеток III слоя коры между соседними структурами, в том числе между разными анализаторами. Иррадиация возбуждения обеспечивает взаимоотношение состояний систем коры при органи­зации условнорефлекторного и других форм поведения. Наряду с иррадиацией возбуждения, которое происходит за счет импульсной передачи активности, существует иррадиация состояния торможения по коре. Механизм иррадиации торможения заключа­ется в переводе нейронов в тормозное состояние под влиянием импульсов, приходящих из возбужденных участков коры, например, из симметричных областей полушарий.

81 Человек и животное непрерывно получают информацию о бесконечном многообразии изменений, которые происходят во внешней и внутренней среде. Это осуществляется благодаря наличию у организма специализированных структур, которые получили название анализаторы (сенсорные системы).

Под анализаторами понимают совокупность образований, обеспечивающих восприятие энергии раздражителя, трансформацию ее в специфические процессы возбуждения, проведение этого возбуждения в структуры ЦНС и к клеткам коры, анализ и синтез специфическими зонами коры этого возбуждения с последующим формированием ощущения.

Понятие об анализаторах введено в физиологию И. П. Павловым в связи с учением о высшей нервной деятельности. Каждый анализатор состоит из трех отделов:

• Периферический или рецепторный отдел, который осуществляет восприятие энергии раздражителя и трансформацию ее в специфический процесс возбуждения.

• Проводниковый отдел, представленный афферентными нервами и подкорковыми центрами, он осуществляет передачу возникшего возбуждения в кору головного мозга.

• Центральный или корковый отдел анализатора, представленный соответствующими зонами коры головного мозга, где осуществляется высший анализ и синтез возбуждений и формирование соответствующего ощущения.

Роль анализаторов при формировании приспособительных реакций чрезвычайно велика и многообразна. Согласно концепции функциональной системы П. К. Анохина формирование любой приспособительной реакции осуществляется в несколько этапов. Анализаторы принимают непосредственное участие в формировании всех этапов функциональной системы. Они являются поставщиками афферентных посылок определенной модальности и различного функционального назначения, причем, одна и та же афферентация может быть обстановочной, пусковой, обратной и ориентировочной в зависимости от этапа формирования приспособительной деятельности.

82 Классификация сенсорных систем

Одним из вариантов является клас­сификация по пяти органам чувств — зрение, слух, вкус, обоняние и осязание. Однако в реальной действительности органов чувств значительно больше. В частности, чувство осязания включа­ет ощущение прикосновения, чувство давления, вибрации, мышечное чувство, температурное чувство, щекотки. Есть ощущение положения тела в простран­стве, голода, жажды, полового влечения (либидо), боли. Таким образом, сенсор­ных систем в реальной действительно­сти значительно больше, чем принято считать. Существует несколько класси­фикаций сенсорных систем по разным признакам. Предлагаем выделить четы­ре основные группы сенсорных систем по их роли (значению) в жизнедеятельности организма.

1. Сенсорные системы внешней среды. Воспринимают и анализируют изменения окружающей среды (зрительная, слуховая, тактиль­ная, температурная, обонятельная и вкусовая системы).

Роль этих систем познание внеш­него мира, приспособление к окружаю­щей среде, поддержание тонуса ЦНС, что возможно благодаря импульсации, возникающей при действии раздражите­лей на рецепторы. Сенсорные системы внешней среды — это многоканальная система связи с окружающим миром. С помощью этих сенсорных систем ор­ганизм познает свойства предметов и явлений окружающей среды, полезные и негативные стороны их воздействия на организм.

2. Сенсорные системы вну­тренней среды. Воспринимают и анализируют изменения внутренней среды организма, показателей деятель­ности различных органов. Существен­ные изменения некоторых показателей внутренней среды организм может вос­принимать субъективно в виде ощуще-

ний (жажда, голод). Они формируются на основе биологических потребностей. Имеется несколько этих систем со спе­цифическими рецепторами:

1) химизма внутренней среды (напри­мер, воспринимается недостаток глюкозы, аминокислот);

2) осмотического давления (осморецеп-торы);

3) количества жидкости (волюморецеп-торы);

4) наполнения полых внутренних орга­нов (рецепторы растяжения).

3. Сенсорные системы по­ложения тела. Воспринимают и анализируют изменения положения тела в пространстве и частей тела от­носительно друг друга. Эти системы играют важную роль в регуляции мы­шечного тонуса и поддержании с его помощью естественной позы, в восста­новлении нарушенной позы, в коорди­нации движений. К данным системам следует отнести вестибулярную и пропри-оцептивную. Поскольку организм оце­нивает положение тела в пространстве и частей тела относительно друг друга, эта импульсация доходит до сознания и воспринимается субъективно в виде ощущений («темное чувство», по выра­жению И. М. Сеченова).

4. Сенсорная система боли. Эту систему следует выделить, учитывая ее особую роль — информирование о повреждающих действиях на организм и патологических процессах. Она включа­ет две части: сенсорную, формирующую болевые ощущения, и обезболивающую, угнетающую неприятные ощущения.

Боль — это неприятное, в виде стра­дания ощущение, возникающее в ре­зультате действия на организм сверх­сильного раздражителя, развития пато­логического процесса или кислородного голодания тканей.

Периферический (рецепторный) отдел анализаторов

Рецепторы играют ведущую роль в получении организмом информации о состоянии внешней и внутренней среды. Благодаря большому многообразию рецепторов человек способен воспринимать стимулы разных модальностей.

Рецепторы представляют собой конечные специализированные образования, которые предназначены для восприятия энергии раздражителя и трансформации ее в специфическую активность нервной клетки. У большинства рецепторных аппаратов основной структурной единицей является клетка, снабженная подвижными волосками или ресничками, которые представляют собой как бы периферические подвижные антенны. В составе волосков выделяют 9 пар периферических фибрилл, которые сокращаются под действием атф, благодаря чему осуществляется непрерывные поиски адекватного стимула и обеспечиваются условия взаимодействия с ним. Центральные 2 фибриллы выполняют опорную функцию.

Общий механизм рецепции слагается из механохимических молекулярных процессов, обеспечивающих движение антенн, и общих биохимических циклов при взаимодействии специфического стимула с рецепторными мембранами антенн. Однако, у некоторых рецепторов во взаимодействии со стимулом принимает участие вся клетка (например, хеморецепторные клетки, чувствительные к напряжению кислорода в крови), у других восприятие осуществляется микроворсинками (вкусовые луковицы). У большинства рецепторов кожи, внутренних органов и мышц участки преобразования стимула находятся в окончаниях нервных волокон.

Классификация рецепторов. В основу классификации рецепторов положено несколько критериев.

• Психофизиологический характер ощущения: тепловые, холодовые, болевые и др.

• Природа адекватного раздражителя: механо-, термо-, хемо-, фото-, баро-, осмбрецепторы и др.

• Среда, в которой рецептор воспринимает раздражитель: экстеро-, интерорецепторы.

• Отношение к одной или нескольким модальностям: моно- и полимодальные (мономодальные преобразуют в нервный импульс только один вид раздражителя — световой, температурный и т. д., полимодальные могут несколько раздражителей преобразовать в нервный импульс — механический и температурный, механический и химический и т. д.).

• Способность воспринимать раздражитель, находящийся на расстоянии от рецептора или при непосредственном контакте с ним:

контактные и дистантные.

• Уровень чувствительности (порог раздражения): низкопороговые (механорецепторы) и высокопороговые (ноцицепторы).

• Скорость адаптации: быстроадаптирующиеся, (тактильные), медленноадаптирующиеся (болевые) и неадаптирующиеся (вестибулярные рецепторы и проприорецепторы).

• Отношение к различным моментам действия раздражителя: при включении раздражителя, при его выключении, на протяжении всего времени действия раздражителя.

• Морфофункциональная организация и механизм возникновения возбуждения: первичночувствующие и вторичночувствующие.

В первичночувствующих рецепторах стимул действует на воспринимающий субстрат, заложенный в самом сенсорном нейроне, который при этом возбуждается непосредственно (первично) раздражителем. К первичночувствующим рецепторам относятся: обонятельные, тактильные рецепторы и мышечные веретена.

К вторичночувствующим относятся те рецепторы, у которых между действующим стимулом и сенсорным нейроном располагаются дополнительные рецептирующие клетки, при этом сенсорный нейрон возбуждается не непосредственно стимулом, а опосредовано (вторично) — потенциалом рецептирующей клетки. К вторичночувствующим рецепторам относятся: рецепторы слуха, зрения, вкуса, вестибулярные рецепторы.

Механизм возникновения возбуждения у этих рецепторов различен. В первичночувствующем рецепторе транформация энергии раздражителя и возникновение импульсной активности идет в самом сенсорном нейроне. У вторичночувствующих рецепторов между сенсорным нейроном и стимулом расположена рецептирующая клетка, в которой под влиянием раздражителя идут процессы трансформации энергии раздражителя в процесс возбуждения. Но в этой клетке не возникает импульсной активности. Рецепторные клетки синапсами соединены с сенсорными нейронами. Под влиянием потенциала рецептирирующей клетки выделяется медиатор, который возбуждает нервное окончание сенсорного нейрона и вызывает в нем появление локального ответа — постсинаптического потенциала. Он оказывает деполяризующее действие на отходящее нервное волокно, в котором возникает импульсная активность.

Следовательно, у вторичночувствующих рецепторов локальная деполяризация возникает дважды: в рецептирующей клетке и в сенсорном' нейроне. Поэтому принято называть градуальный электрический ответ рецептирующей клетки рецепторным потенциалом, а локальную деполяризацию сенсорного нейрона генераторным потенциалом, имея в виду, что он генерирует в отходящем от рецептора нервном волокне распространяющееся возбуждение. У первичночувствующих рецепторов рецепторный потенциал является и генераторным. Таким образом, рецепторный акт можно изобразить в виде следующей схемы.

Для первичночувствующих рецепторов:

• I этап — специфическое взаимодействие раздражителя с мембраной рецептора;

• II этап — возникновение рецепторного потенциала в месте взаимодействия раздражителя с рецептором в результате изменения проницаемости мембраны для ионов натрия (или кальция);

• III этап — электротоническое распространение рецепторного потенциала к аксону сенсорного нейрона (пассивное распространение рецепторного потенциала вдоль нервного волокна называется электротоническим);

• IV этап — генерация потенциала действия;

• V этап — проведение потенциала действия по нервному волокну в ортодромном направлении.

Для вторичночувствующих рецепторов:

• I-III этапы совпадают с такими же этапами первичночувствующих рецепторов, но протекают они в специализированной рецептирующей клетке и заканчиваются на ее пресинаптической мембране;

• IV этап — выделение медиатора пресинаптическими структурами рецептирующей клетки;

• V этап — возникновение генераторного потенциала на постсинаптической мембране нервного волокна;

• VI этап — электротоническое распространение генераторного потенциала по нервному волокну;

• VII этап — генерация потенциала действия электрогенными участками нервного волокна;

• VIII этап — проведение потенциала действия по нервному волокну в ортодромном направлении.

Свойства периферического (рецепторного) отдела анализаторов. В деятельности каждого анализатора и его отделов независимо от характеристики раздражителей различают ряд общих свойств. Для периферического отдела анализаторов характерны следующие свойства.

1. Специфичность — способность воспринимать определенный, т. е. адекватный данному рецептору, раздражитель. Эта способность рецепторов сформировалась в процессе эволюции.

2. Высокая чувствительность — способность реагировать на очень малые по интенсивности параметры адекватного раздражителя. Например, для возбуждения фоторецепторов сетчатки глаза достаточно нескольких, а иногда и одного, квантов света. Обонятельные рецепторы информируют организм о появлении в атмосфере единичных молекул пахучих веществ.

3. Способность к ритмической генерации импульсов возбуждения в ответ на однократное действие раздражителя.

4. Способность к адаптации — т. е. способность приспосабливаться (“привыкать”) к постоянно действующему стимулу. Адаптация может выражаться в снижении активности рецептора и частоты генерации импульсов возбуждения, вплоть до полного его прекращения. В зависимости от скорости адаптации различают:

• быстроадаптирующиеся (тактильные);

• медленноадаптирующиеся (терморецепторы);

• неадаптирующиеся (вестибулярные и проприорецепторы). Выделяют несколько видов адаптации:

• изменение возбудимости рецептора в сторону снижения — десенсибилизация;

• изменение возбудимости в сторону повышения — сенсибилизация.

Адаптация проявляется в снижении абсолютной чувствительности рецептора и в повышении дифференциальной чувствительности к стимулам, близким по силе к адаптируемому. Сенсибилизация проявляется в стойком повышении возбудимости, которое вызывается многократными действиями пороговых раздражителей, наносимых один за другим.

Процессы адаптации в рецепторах могут определяться внешними и внутренними факторами. В качестве внешнего фактора в механизме адаптации могут выступать свойства вспомогательных структур. Так, например, причиной быстрой адаптации телец Пачини являются свойства вспомогательных структур — капсулы рецептора, которые не пропускают к нервному окончанию статической составляющей механического раздражения, в то время как динамическая составляющая раздражителя проходит через оболочки капсулы, хотя и уменьшается по амплитуде. Это предположение подтверждается тем, что после удаления капсулы рецептор начинает генерировать рецепторный потенциал в течение длительного действия раздражителя.

Внутренние факторы механизма адаптации связаны с изменениями физико-химических процессов в самом рецепторе. Например, выявлено различие в наборе натриевых и калиевых каналов в быстро- и медленноадаптирующихся рецепторах. Важную роль в явлениях адаптации играют эфферентные влияния от нервных центров. При наличии тормозной эфферентной регуляции процессы адаптации в рецепторах ускоряются.

5. Функциональная мобильность. Анализаторные системы способны изменять свою деятельность путем изменения количества функционирующих рецепторов в зависимости от условий окружающей среды и функционального состояния организма. Например, количество функционирующих вкусовых рецепторов больше в состоянии голода, а после приема пищи их количество уменьшается. При снижении температуры окружающей среды количество холодовых рецепторов кожных покровов увеличивается.

6. Низкая способность к аккомодации.

7. Специализация рецепторов к определенным параметрам адекватного раздражителя. Рецепторы, входящие в состав периферического отдела анализатора, неоднородны по отношению к различным моментам действия раздражителя. Имеются рецепторы, которые возбуждаются только в момент включения раздражителя, другие— только в момент выключения раздражителя, а третьи реагируют в течение всего времени действия раздражителя. Кроме того, имеются рецепторы, реагирующие на изменение интенсивности раздражителя или на его перемещение и т. д.

8. Способность к элементарному первичному анализу. Благодаря связи между отдельными рецепторами периферического отдела, отражающими отдельные параметры раздражителя, осуществляется элементарный первичный анализ последнего. Деятельность рецепторов осуществляется не изолированно, а во взаимодействии, в связи с чем уже на рецепторном уровне осуществляется анализ раздражителя по разным его характеристикам (параметрам).

9. Кодирование информации. Информация о действии химических, механических раздражителей, имеющих разнообразную природу, преобразуется рецепторами в универсальные для мозга сигналы — нервные импульсы. Таким образом рецепторы кодируют информацию о среде, т. е. преобразуя сигналы, непонятные мозгу, в сигналы, понятные ему.

Кодирование качества. Различение действующих на организм внешних раздражителей по их физической и химической природе происходит уже при первой встрече с ними соответствующих рецепторов. Это различение достигается избирательной чувствительностью рецепторов к определенному виду энергии и очень низкими порогами возбуждения. Глаз, например, возбуждается светом, но не реагирует на звук, а ухо чувствительно к звуку, но безразлично к свету и т. д. Как же мозг “узнает” модальность действующего раздражителя? Если потенциалы действия всех нервных волокон в принципе одинаковы, то почему раздражители разных модальностей ощущаются по-разному? Анализ отдельных признаков сенсорных стимулов в нервной системе не может основываться на показании только одного рецепторного образования, а должен осуществляться их совокупной деятельностью.

Сенсорный проводящий путь состоит из ряда модально-специфических нейронов, которые соединены синапсами. Такой принцип организации получил название меченой линии или топической организации. Суть этого принципа заключается в пространственно упорядоченном расположении нейронов на различных уровнях сенсорных систем соответственно характеристикам их рецептивных полей.

Рецептивное поле с морфологической точки зрения — это участок рецепторной поверхности, с которым данная нервная структура (волокно, нейрон) связана анатомически (жестко). С функциональной точки зрения — рецептивное поле — понятие динамическое, означающее, что один и тот же нейрон в различные отрезки времени в зависимости, например, от характеристики воздействия может оказаться связанным с различным числом рецепторов.

Принципу меченой линии противопоставлялась теория “структуры ответа”, согласно которой рецепторы кодируют качественные особенности раздражителей структурой импульсного ответа. Эта теория предполагала отсутствие жестких связей между рецепторами и центральными нейронами. Основанием для нее послужили экспериментальные данные, показавшие, что кодирование информации осуществляется не одиночными импульсами, а группой равномерно следующих потенциалов действия. В качестве сигнальных признаков могут быть использованы дополнительные параметры активности рецепторов, например, частота импульсации или продолжительность межимпульсных интервалов.

Для равномерно следующих импульсов сигнальными признаками могут служить число импульсов в пачке или продолжительность пачек, а также интервалы между ними и периодичность их следования. Такое кодирование открывает безграничные возможности, т. к. вероятны самые разнообразные вариации с пачками импульсов. Пространственно-временное распределение электрической активности нервных волокон называют паттернами. Разнообразные качества стимулов, согласно этой теории, отображаются характерными “узорами” паттернов. Нейроны способны расшифровать эти сигналы и в зависимости от их структуры формировать ощущение, которое соответствует раздражителю, кодируемого определенными паттернами.

Нейрон, по-разному реагируя на различные паттерны, может участвовать в выполнении нескольких функций. Каждый оттенок качества ощущения возникает в результате деятельности комплекса нейронов, образующих динамические ансамбли, формирование которых зависит от характера паттернов, приходящих от рецепторов.

Для каждой модальности имеется своя форма кодирования информации в соответствии с физическими свойствами различаемых стимулов. Одни качества распознаются сенсорными системами, функционирующими по принципу топической организации, другие кодируются паттернами. Например, распознавание многих качеств зрительных образов осуществляется меченными линиями, а вкусовые раздражители кодируются паттернами.

Кодирование интенсивности. Так как частота афферентной импульсации зависит от амплитуды рецепторного потенциала, которая в свою очередь пропорциональна интенсивности раздражения, то кодирование интенсивности стимула осуществляется посредством изменения частоты следования нервных импульсов от рецепторов в нервные центры. Увеличение интенсивности раздражителя кодируется увеличением частоты импульсной активности.

Между интенсивностью стимула и частотой потенциалов действия существует логарифмическая зависимость — ощущение увеличивается пропорционально логарифму интенсивности раздражения. Эта зависимость получила название закона Вебера-Фехнера, описавших ее.

Одним из способов кодирования интенсивности сенсорных стимулов является кодирование числом нервных элементов, участвующих в ответе. Этот способ кодирования имеет существенное значение, т. к. не все афференты обладают одинаковым порогом возбуждения. Есть основания полагать, что ЦНС “считывает” интенсивность по числу реагирующих элементов, умноженному на среднюю частоту импульсации. Таким образом, изменения интенсивности раздражителя отображаются колебаниями частоты импульсации в отдельных афферентных волокнах и количеством каналов связи, по которым сигнализация поступает в мозг.

Пространственное кодирование. В некоторых сенсорных системах естественная стимуляция рецепторов характеризуется тем или иным распределением локальных стимулов. Способность определять место или конфигурацию стимулов называется пространственным различением. В зрительной и слуховой системах выделены афферентные каналы, пространственно разнесенные в центральных структурах и связанные с обработкой информации о локализации источника раздражения, его перемещении, хроматических и частотных качествах сигнала.

Временное кодирование. Способность оценки времени неотделима от других аспектов кодирования. Частота нервных разрядов — это универсальная переменная величина, которая изменяется во времени. Кодирование информации осуществляется группой равномерно следующих импульсов. В качестве сигнальных признаков используются такие временные параметры выходных сигналов, как частота импульсации или продолжительность межимпульсных интервалов. Для временного различия двух раздражителей необходимо, чтобы нервные процессы, вызванные этими раздражителями, не сливались во времени.

Таким образом, уже на уровне рецепторов осуществляется первичное кодирование качества стимулов и их количественных характеристик — переход из присущей им формы физической и химической энергии в форму нервных импульсов. Преобразованная информация поступает на следующий уровень сенсорной системы, где подвергается дальнейшим преобразованиям, приводящим к изменению кода. Ни на одном уровне сенсорной системы не происходит восстановления стимула в его первоначальной форме, т. е. декодирование. Это основное отличие физиологического кодирования от большинства технических систем связи, где сообщение, как правило, восстанавливается в первоначальном, декодированном виде.

Свойства проводникового отдела анализаторов

Этот отдел анализаторов представлен афферентными путями и подкорковыми центрами. Основными функциями проводникового отдела являются: анализ и передача информации, осуществление рефлексов и межанализаторного взаимодействия. Эти функции обеспечиваются свойствами проводникового отдела анализаторов, которые выражаются в следующем.

1. От каждого специализированного образования (рецептора), идет строго локализованный специфический сенсорный путь. Эти пути как правило, передают сигналы от рецепторов одного типа.

2. От каждого специфического сенсорного пути отходят коллатерали к ретикулярной формации, в результате чего она является структурой конвергенции различных специфических путей и формирования мультимодальных или неспецифических путей, кроме того, ретикулярная формация является местом межанализаторного взаимодействия.

3. Имеет место многоканальность проведения возбуждения от рецепторов к коре (специфические и неспецифичекие пути), что обеспечивает надежность передачи информации.

4. При передаче возбуждения происходит многократное переключение возбуждения на различных уровнях ЦНС. Выделяют три основных переключающих уровня:

• спинальный или стволовой (продолговатый мозг);

• зрительный бугор;

• соответствующая проекционная зона коры головного мозга.

Вместе с тем, в пределах сенсорных путей существуют афферентные каналы срочной передачи информации (без переключении) в высшие мозговые центры. Полагают, что по этим каналам осуществляется преднадстройка высших мозговых центров к восприятию последующей информации. Наличие таких путей является признаком совершенствования конструкции мозга и повышения надежности сенсорных систем.

5. Кроме специфических и неспецифических путей существуют так называемые ассоциативные таламо-кортикальные пути, связанные с ассоциативными областями коры больших полушарий. Показано, что с деятельностью таламо-кортикальных ассоциативных систем связана межсенсорная оценка биологической значимости стимула и др. Таким образом, сенсорная функция осуществляется на основе взаимосвязанной деятельности специфических, неспецифических и ассоциативных образований мозга, которые и обеспечивают формирование адекватного адаптивного поведения организма.

Свойства коркового отдела анализаторов

1. Каждая сенсорная система (каждый анализатор) имеет проекцию в кору больших полушарий. Корковый отдел анализаторов имеет центральную часть и окружающую ее ассоциативную зону (по представлению И. П. Павлова — “ядро” и рассеянные элементы). Центральная часть коркового отдела анализатора состоит из высокодифференцированных в функциональном отношении нейронов, которые осуществляют высший анализ и синтез информации, поступающей к ним. Ассоциативные корковые зоны представлены менее дифференцированными нейронами, способных к выполнению простейших функций. Синтез и анализ афферентных импульсов этими клетками осуществляется в элементарной, примитивной форме.

2. Одной из общих черт организации сенсорных систем является принцип двойственной проекции их в кору больших полушарий. Этот принцип тесно связан с многоканальностью проводящих путей и выражается в осуществлении двух различных типов корковых проекций, которые можно разделить на первичные и вторичные проекции. Первичные и вторичные проекционные зоны окружены ассоциативными корковыми зонами той же сенсорной системы. Примером двойственной проекции в коре головного мозга может служить представительство вкусового анализатора. Его первичная корковая проекция представлена, по-видимому, орбитальной областью коры, так как именно здесь при раздражении рецепторов языка вызванные ответы возникают с самым коротким латентным периодом и имеют самую высокую амплитуду. Вторичной проекционной областью коры вкусового анализатора является соматосенсорная область. Здесь вызванные ответы возникают значительно позже, чем в орбитальной области, и амплитуда их меньше.

3. Взаимодействие анализаторов на корковом уровне осуществляется за счет ассоциативных корковых зон и за счет наличия полимодальных нейронов.

Взаимодействие анализаторов. Деятельность одних анализаторов находится в зависимости от деятельности других, причем, может наблюдаться как усиление деятельности анализатора, так и ее ослабление.

Взаимодействие анализаторов осуществляется на различных уровнях — спинальном, ретикулярном и таламо-кортикальном. Особенно широкая интеграция сигналов наблюдается в нейронах ретикулярной формации. Интеграция сигналов высшего порядка осуществляется на корковом уровне. В результате множественных связей с нижележащими уровнями анализаторов и неспецифических систем многие нейроны коры приобретают способность отвечать на сложные комбинации сигналов различной природы. Это особенно свойственно клеткам ассоциативных областей, а также моторной зоне коры больших полушарий. Пирамидные клетки этой области коры являются общим конечным путем слуховых, зрительных, тактильных и других сигналов.

Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровнях. Особенно широка интеграция сигналов в ретикулярной формации. В коре большого мозга происходит интеграция сигналов высшего порядка. В результате образования множественных связей с другими сенсорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигналов разной модальности. Это особенно свойственно нервным клеткам ассоциативных областей коры большого мозга, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кросс-модальное) взаимодействие на корковом уровне создает условия для формирования «схемы мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.

Дополнительно:

Проведение возбуждения по проводниковому отделу осуществляется двумя афферентными путями:

• специфическим проекционным путем от рецептора по строго обозначенным специфическим путям с переключением на различных уровнях ЦНС (на уровне спинного и продолговатого мозга, в зрительных буграх и в соответствующей проекционной зоне коры большого мозга);

• неспецифическим путем с участием ретикулярной формации. На уровне ствола мозга от специфического пути отходят коллатерали к клеткам ретикулярной формации, к которым могут конвергировать различные афферентные возбуждения, обеспечивая взаимодействие анализаторов. При этом афферентные возбуждения теряют свои специфические свойства (сенсорную модальность) и изменяют возбудимость корковых нейронов. Возбуждение проводится медленно через большое число синапсов. За счет коллатералей в процесс возбуждения включаются гипоталамус и другие отделы лимбической системы мозга, а также двигательные центры. Все это обеспечивает вегетативный, двигательный и эмоциональный компоненты сенсорных реакций.

83 Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сен сорная адаптация — общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя (например, мы не замечаем непрерывного давления на кожу привычной одежды).

Адаптационные процессы начинаются на уровне рецепторов, охватывая и все нейронные уровни сенсорной системы. Адаптация слаба только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленно адаптирующиеся. Первые после развития адаптации практически не посылают в мозг информации о длящемся раздражении. Вторые эту информацию передают в значительно ослабленном виде. Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается. Так, в темноте абсолютная чувствительность зрения резко повышается.

В сенсорной адаптации важную роль играет эфферентная регуляция свойств сенсорной системы. Она осуществляется за счет нисходящих влияний более высоких на более низкие ее отделы. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Состояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, интегрированную с другими отделами мозга и организма в целом. Эфферентные влияния в сенсорных системах чаще всего имеют тормозной характер, т. е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.

Общее число эфферентных нервных волокон, приходящих к рецепторам или элементам какого-либо нейронного слоя сенсорной системы, как правило, во много раз меньше числа афферентных нейронов, приходящих к тому же слою. Это определяет важную особенность эфферентного контроля в сенсорных системах: его широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части нижележащего нейронного слоя.

 

При длительном действии раздражителя происходит адаптация вкусового анализатора, иными словами, его чувствительность понижается, причем обычно к тому виду вкусовых ощущений, который вызывается данным раздражителем. Быстрее всего происходит адаптация к сладкому и соленому; к кислому и особенно к горькому адаптация протекает очень медленно. Под влиянием адаптации из двух одинаково соленых или сладких блюд, последовательно принимаемых в пищу, второе кажется менее соленым или сладким, чем первое; Адаптацией объясняется пресный вкус нормально посоленного супа, если ему предшествовала соленая закуска. Адаптация к соленому повышает возбудимость к сладкому, а адаптация к сладкому повышает возбудимость к кислому и горькому. Поэтому после соленой пищи пресная вода кажется сладковатой, а после сладкой - яблоко или апельсин кажутся более кислыми.Чувствительность обонятельного анализатора тем выше, чем чище воздух. Резкое понижение и даже полное исчезновение обоняния наблюдается при затрудненном попадании пахучих веществ в обонятельную область слизистой оболочки носа, например при насморке.

Адаптация сенсорных систем к постоянной силе длительно действу­ющего раздражителя заключается, в основном, в понижении абсолютной и повышении дифференциальной чув­ствительности. Это свойство присуще всем отделам сенсорной системы, но наиболее ярко оно выражено у рецеп­торов и заключается в изменении не только их возбудимости и возбужде­нии, но и показателей функциональной мобильности, т.е. в изменении числа функционирующих рецепторных струк­тур (П. Г. Снякин). В проводниковом

отделе и в коре адаптация проявляется в уменьшении числа соответственно активированных волокон и нервных клеток. В основе адаптации отдельных рецепторов лежат биофизические ме­ханизмы, проявляющиеся в снижении проницаемости клеточной (рецептор-ной) мембраны для ионов Na+ и в об­легчении ее проницаемости для ионов К+, что сказывается на развитии ГП, который снижается, а затем полностью исчезает в процессе адаптации (меха­низмы те же, что и при аккомодации возбудимой ткани).

Адаптация анализаторов заключается в их способности приспосабливаться к длительно действующим раздражителям постоянной интенсивности. Приспособление анализаторов заключается в снижении их абсолютной чувствительности, в результате чего восприятие адаптирующего раздражителя постепенно ослабевает, и некотором повышении дифференциальной чувствительности к стимулам, близким по силе к адаптирующему. В процесс адаптации вовлекаются все слои анализаторной системы, причем в большей мере рецепторные элементы. Адаптация может развиваться в нервных элементах анализаторов как непосредственно (например, многие фоторецепторы реагируют только лишь на включение или выключение светового раздражителя), так и опосредованно в результате тормозных эфферентных влияний, оказываемых различными структурами центральной нервной системы (преимущественно нейронами ретикулярной формации и самой коры больших полушарий) на нервные элементы различных слоев анализатора. Наконец, адаптация отчасти обеспечивается путем влияния вегетативной нервной системы на уровень кровоснабжения нервных элементов анализатора и, прежде всего, его рецепторов.

Адаптацию обонятельного анализатора можно наблюдать при длительном действии запахового раздражителя. По отношению ко многим пахучим веществам довольно быстро наступает полная адаптация, т. е. их запах перестает ощущаться. Человек перестает замечать такие непрерывно действующие раздражители, как запах своего тела, одежды, комнаты и т. п. По отношению к ряду веществ адаптация происходит медленно и лишь частично. При кратковременном действии слабого вкусового или обонятельного раздражителя: адаптация может проявиться в повышении чувствительности соответствующего анализатора. Установлено, что изменения чувствительности и явления адаптации в основном происходят не в периферическом, а в корковом отделе вкусового и обонятельного анализаторов. Иногда, особенно при частом действии одного и того же вкусового или обонятельного раздражителя, в коре больших полушарий возникает стойкий очаг повышенной возбудимости. В таких случаях ощущение вкуса или запаха, к которому возникла повышенная возбудимость, может появляться и при действии различных других веществ.

84, №85, №86 Система зрения — это совокупность структур, обеспечивающих восприятие света (электромагнитных волн длиной 390—760 нм). Человек получает с ее по­мощью 80—90 % осознаваемой инфор­мации об окружающем мире.

Периферический отдел системы зрения — фоторецептор, локализую­щийся в глазу (орган зрения, который включает также часть проводникового отдела и вспомогательные структуры) (рис. 16.2).

Вспомогательные струк­туры. Оптическая система — слезная жидкость, роговица, водянистая влага, хрусталик, стекловидное тело. Обеспе­чивает фокусирование световых лучей на сетчатке и формирование в области ее центральной ямки перевернутого изо­бражения рассматриваемых зрительных объектов.

Глазодвигательный аппарат — на­ружные мышцы глазного яблока (четы­ре прямые и две косые), подниматель верхнего века и орбитальная мышца; внутренние мышцы глаза обеспечива­ют фиксацию, поворот глаз и установку зрительных осей.

Защитные органы включают веки, ресницы, конъюнктива, слезный аппарат, фасции глазницы. Обеспечивают защиту глаз, увлажнение и питание роговицы.

Рецепторный отдел зритель­ного анализатора состоит из четырех видов фоторецепторов: один вид па­лочек и три — колбочек. Рецепторный слой сетчатки прилежит к слою кле­ток пигментного эпителия (рис. 16.3). Всего в сетчатке выделяют 10 слоев, и кванты света могут достигнуть фото­рецепторов, только пройдя через слои сетчатки, расположенные кпереди от рецепторного слоя (за исключением области центральной ямки, где все эти слои «сдвинуты», и свет сразу попада­ет на колбочки, составляющие основу этой части сетчатки). В каждом глазу на­считывается около 110—125 млн палочек (расположена на периферии сетчатки) и 6—7 млн колбочек. Палочки имеют бо­лее высокую световую чувствительность и обеспечивают сумеречное зрение, кол­бочки — дневное зрение.

Фоторецепторы состоят из двух сегментов — наружного и внутреннего с митохондриями, обеспечивающими образование АТФ. Наружный сегмент рецепторов погружен в слой пигмент­ного эпителия сетчатки и выполняет функции поглощения квантов света и преобразования их энергии в РП. Па­лочки и колбочки в структурно-функци­ональном отношении отличаются друг от друга.

Палочки (длина 0,06 мм, диаметр 2— 5 мкм) содержат пигмент родопсин, по­глощающий электромагнитное излуче­ние в диапазоне 400—620 нм. Пороговая чувствительность составляет 2—12 кван­тов света. Когда яркость света невелика, функционируют и палочки и колбочки, обеспечивая мезопическое зрение.

Колбочки (длина 0,035 мм, диаметр 3—6 мкм) имеются трех типов в каждом содержится по одному пигменту (сине-голубой, диапазон поглощения 390— 550 нм; зеленый, диапазон поглощения 440—650 нм; красный, диапазон погло­щения 500—760 нм). Порог чувствитель­ности составляет 30—110 квантов света.

Характеристика фотохимических процессов в рецепторах сетчатки. Зри­тельные пигменты состоят из ретиналя (альдегид витамина А, 11-цис-изомер) и гликопротеида опсина. При погло­щении квантов света 11-цис-ретиналь изомеризуется в транс-ретиналь, и бе­лок родопсин переходит в активную форму — метародопсин II. В результате активируется внутриклеточный G-белок и закрывается часть каналов Na+ и Са2+, что снижает вход Na+ и Са2+ в клетку и ведет к гиперполяризации фоторецепто­ра. Гиперполяризация — это РП, кото­рый вызывает снижение высвобождения из пресинаптической мембраны возбуж­дающего нейромедиатора глутамата. По­следний обеспечивает передачу сигнала на биполярные клетки (1-й нейрон) и на горизонтальные клетки. На постсинап-тических мембранах биполярных клеток имеются ионотропные и метаботропные глутаматные рецепторы.

Для восстановления исходной поля­ризации фоторепторов и их способности ответить на следующий световой стимул необходимо, чтобы вновь открылись ионные каналы клеточной мембраны, что осуществляется посредством других превращений, повышающих уровень цГМФ в гиалоплазме. цГМФ способ­ствует открытию катионных каналов мембраны фоторецептора. Поступаю­щие в рецептор Na+ и Са2+ деполяризуют его мембрану, т.е. восстанавливают ис­ходную поляризацию фоторецептора.

При недостатке в организме витами­нов (А, В1 В2, С), особенно витамина А или его предшественника — бетта-кароти-на, может развиться гемералопия («ку­риная слепота») — нарушение темновой адаптации и, соответственно, снижение ночного и сумеречного зрения.

Проводниковый отделобе­спечивает доставку информации в кор­ковый отдел и ее обработку в центрах ствола мозга и промежуточного мозга (на «станциях переключения») — особо важную роль играет таламическая об­ласть. Вертикальное направление обработ­ки сигналов (фоторецептор — бипо­лярная клетка — ганглиозная клетка) представлено в центральной ямке. Гори­зонтальное направление обработки сиг­налов осуществляется горизонтальными клетками, и, в основном, на периферии сетчатки оно обеспечивает суммирова­ние сигналов, восприятие слабых сиг­налов, восприятие движений. В бипо­лярных нейронах off-типа представлены ионотропные глутаматные рецепторы, и их мембрана деполяризуется в темноте. В постсинаптические мембраны ден-дритов биполярных нейронов оп-типа встроены метаботропные глутаматные рецепторы. Стимуляция этих рецепто­ров глутаматом ведет к закрытию ион­ных каналов и гиперполяризации мем­браны этих клеток в темноте и, наобо­рот, к деполяризации на свету. Известно что on- и off-биполярные клетки также отличаются по своим свойствам, среди каждого из этих типов можно выделить еще 4—5 подтипов биполярных клеток. Таким образом, on-биполярные клетки активируются на свету, а off-клетки — в темноте.

Биполярные клетки передают сигна­лы на ганглиозные клетки, где впервые возникает ПД (2-й вертикальный ней­рон), а также на амакриновые клетки, которых насчитывают до 20 типов. По аксонам ганглиозных клеток, формиру­ющим зрительный нерв, импульсы идут в вышележащие отделы ЦНС. При этом на одну ганглиозную клетку конверги­руют в среднем около 100 фоторецепто­ров. Однако в центральной ямке каждая колбочка связана с одним биполяром, который, в свою очередь, связан с одной ганглиозной клеткой, что обеспечивает высокую остроту зрения центральной ямки. На периферии сетчатки на один биполяр конвергирует множество па лочек и/или несколько колбочек, а на ганглиозную клетку — множество бипо­лярных, что обеспечивает высокую све­точувствительность периферии сетчатки при низком разрешении. На уровне сет­чатки в обработке зрительных сигналов участвуют многие десятки типов нейро­нов с различными нейромедиаторами.

В сетчатке имеются разные рецеп­торы: реагирующие на включение света (on-рецепторы); реагирующие на выклю­чение или ослабление света (off-рецеп-торы); реагирующие и на включение, и на выключение (on-off-рецепторы). Б и-поляры формируют on-систему, активируемую световой стимуляцией, и off-систему, активируемую при умень­шении освещения. Обе системы посред­ством ганглиозных клеток информируют ЦНС по двум независимым нейронным каналам, связаны с on-, off- или on-off-рецептивными полями. Информация от сетчатки направляется с помощью зри­тельных нервов и трактов в латеральные коленчатые тела, а от них — к коре го­ловного мозга. Часть зрительных путей проводит сигналы от сетчатки к нейро­нам претектальной области и верхних холмиков четверохолмия (регуляция диаметра зрачка и аккомодация зрения; регуляция движения глаз через ство­ловые ядра и волокна III, IV и VI пар черепных нервов), к нейронам ядер ве­стибулярной системы и мозжечка (ор­ганизация компенсаторных движений глаз при изменениях положения головы и тела в пространстве). Часть зритель­ной информации направляется к ядрам гипоталамуса (управление биоритмом сон-бодрствование, регуляция функций эндокринной системы и симпатической нервной системы).

В центральном (корковом) отделе сис­темы зрения осуществляется слияние изображений от сетчатки обоих глаз в единое целое, что улучшает восприятие глубины пространства. В центральный (корковый) отдел системы зрения ин­формация сначала поступает в первич­ную зрительную кору (поле 17), затем — во вторичную (поля 18 и 19). С помощью первичной зрительной коры (основная часть поля 17) формируются ощущения яркости, контрастности, цвета, деталь­ный анализ формы неподвижных пред­метов, элементарный анализ движения. Вся информация от полей 17, 18 и 19 направляется в третичные ассоциатив­ные зоны коры: лобные и теменно-височные. Здесь осуществляется тонкий анализ образов, цвета, движений пред­метов, формируется зрительное внима­ние, перемещение взгляда, узнавание знакомой обстановки и знакомых лиц, а также слуховые раздражители. Раздра­жение этих полей вызывает зрительные галлюцинации, навязчивые ощущения, движение глаз. Совместная работа пер­вичной зрительной коры, вторичной и ассоциативной коры (третичная зона для всех анализаторов) обеспечивает распознавание всех зрительных объек­тов, зрительное внимание, выполнение целенаправленных действий под зри­тельным контролем.

Механизмы глаза, обеспечивающие яс­ное зрение в различных условиях

При рассматривании разноудален­ных от наблюдателя объектов включа­ются несколько механизмов, главным из которых является аккомодация.

Аккомодация — это процесс сохра­нения изображения объекта на сетчатке глаза за счет изменения преломляющей силы хрусталика. Степень аккомода­ции с возрастом уменьшается (в 10 лет она составляет — 14 диоптрий (Д), в 20 лет — 10 Д, в 40 лет — 5 Д, 60 лет — 1Д) вследствие снижения эластичности хрусталика. При этом ближайшая точка ясного видения постепенно отодви­гается от глаза с 7 см в 10 лет до 1 м к 60 годам (пресбиопия возраста гиперметропия).

Кривизна хрусталика увеличивает­ся при сокращении ресничной мышцы вследствие ослабления натяжения цин-новой связки, при этом хрусталик за счет своей эластичности (упругости) стано­вится более выпуклым, преломляющая сила его увеличивается, глаз настраива­ется на видение близко расположенных предметов. При рассматривании более удаленных предметов ресничная мышца расслабляется, циннова связка натяги­вается, что ведет к натяжению капсулы хрусталика, его уплощению и снижению преломляющей силы хрусталика. Адек­ватным стимулом для изменения сте­пени аккомодации является нечеткость изображения на сетчатке — ретиналь-ный рефлекс. Иннервируется цилиарная мышца волокнами парасимпатической ветви III пары черепных нервов.

Суммарная преломляющая сила опти­ческого аппарата глаза при рассматрива­нии далеко находящихся объектов близ­ка к 60 (Д) и называется рефракцией. Одна диоптрия соответствует прелом­ляющей силе линзы, главное фокусное расстояние которой (F) в воздухе равно 1 м (Д = 1/F).

При нормальной рефракции глаза лучи от далеко расположенных предме­тов после прохождения через оптиче­ский аппарат глаза собираются в фокусе в центральной ямке сетчатки. Нормаль­ная рефракция называется эмметропией (рис. 16.5). Однако нередко встречаются и аномалии рефракции глаза:

1. Миопия (близорукость) — рефрак­ция глаза, при которой лучи от объекта после прохождения через оптический аппарат фокусируются впереди сетчатки (см. рис. 16.5). Это нарушение рефрак ции может быть связано с большой сум­марной преломляющей силой глаза или с большой длиной глазного яблока. При миопии близко расположенные предме­ты видны хорошо, а отдаленные — хуже. Для коррекции зрения применяют очки с двояковогнутыми (рассеивающими) линзами.

2. Гиперметропия (дальнозоркость) — рефракция глаза, при которой лучи от далеко расположенных объектов фоку­сируются за сетчаткой (см. рис. 16.5). При гиперметропии нечеткость зрения возникает при рассматривании близко расположенных предметов. Для коррек­ции зрения применяют очки с двояко­выпуклыми линзами (собирающими).

3. Астигматизм — нарушение реф­ракции глаза, обусловленное различной кривизной роговицы и/или хрусталика в разных меридианах. При этом прелом­ляемый световой пучок, идущий от то­чечного источника, невозможно собрать в одной точке (фокусе), и поэтому пред­меты воспринимаются искаженными. Для коррекции зрения используют очки с цилиндрическими линзами с разной преломляющей силой в разных точках.

Вергентные движения глаз — это так­же приспособление для ясного видения разноудаленных предметов. Конвергенция (сведение) зрительных осей происходит в случае рассматривания близко распо­ложенных объектов, дивергенция (раз-ведение) осей — при удалении объекта. Это обеспечивает удержание изобра­жения объекта в центре желтого пятна.

Конвергентная рефлекторная реак­ция зрачков: при рассматривании близко расположенных объектов (их сужение) и при рассматривании более удаленных объектов (расширение) также способ­ствует ясному зрению. Рефлекторное сужение зрачков запускается пропри-оцептивными импульсами от сокраща­ющихся внутренних прямых мышц глаза и способствует уменьшению искажения изображения на сетчатке, вызываемого сферической аберрацией. Сферическая аберрация — рассеивание лучей вслед­ствие неодинаковой силы преломления разных участков роговицы и хрустали­ка — в их центре оно больше, чем на периферии. Поэтому изображение на сетчатке при большом диаметре зрачка становится менее резким. Конвергент­ная реакция сужения зрачков устраняет участие периферических частей рогови­цы и хрусталика в построении изобра­жения, что также уменьшает искажение изображения на сетчатке.

Бинокулярное зрение тоже улучшает восприятие разноудаленных предметов. Оно формируется в процессе опыта на

основе механизмов зрительной коры, обеспечивает слияние сетчаточных изо­бражений (фузии) от обеих сетчаток в единое целое. Восприятие объемной формы и расположения объектов по глубине улучшается вследствие явления относительной диспаратности (расхож­дения) — небольшого различия в изо­бражении объектов на корреспондиру­ющих (соответствующих) участках сет­чаток левого и правого глаза, поскольку они всегда видят один и тот же объект под различными углами.

В условиях изменения освещенности ясное зрение обе­спечивают два основных механизма.

Темновая и световая адаптация — главные из них, осуществляются с по­мощью фотохимических процессов (расщепление зрительных пигментов в колбочках и палочках на свету и их ре-синтез в темноте), а также с помощью увеличения размеров рецептивных полей биполярных и ганглиозных клеток.

Зрачковый рефлекс может изменять интенсивность светового потока, попа­дающего на сетчатку, примерно в 30 раз (за счет изменения диаметра зрачка в диапазоне 1,5-8,0 мм). При уменьшении освещенности происходит расширение зрачка (мидриаз) за счет сокращения мышцы-дилататора, иннервируемого волокнами от верхнего шейного сим­патического ганглия. При увеличении освещенности и рассматривании близко расположенных предметов происходит сужение зрачка (миоз) за счет сокраще­ния мышечного сфинктера. Последний (см. рис. 16.2) получает парасимпатиче­скую иннервацию, подобно цилиарной мышце.

Восприятие крупных объек­тов и их деталей обеспечивается посредством центрального и перифери­ческого зрения. Центральное зрение. Наиболее тон­кая оценка мелких деталей предмета (наибольшая острота зрения) обеспечи­вается в том случае, если изображение предмета попадает в центральную ямку сетчатки глаза. Острота зрения опреде­ляется наименьшим углом зрения, при котором глаз еще способен раздельно воспринимать две светящиеся точки. В норме он составляет 1 мин.

Периферическое зрение обеспечивает видение крупных объектов, что объяс­няется большим полем зрения (види­мое пространство при фиксированном взоре). Поле зрения одного глаза для объекта белого цвета составляет: кнару­жи — 90°, кверху — 55°, книзу — 60°. Хроматические поля зрения уже, чем ахроматические, что объясняется осо­бенностями расположения палочек и разных видов колбочек в сетчатке (см. рис. 16.1).

Используется также произвольное движение глаз, как при чтении — пере­вод взора с одной точки на другую.

Восприятию движущихся объектов способствуют следующие содружественные движения глаз.

Произвольные движения глаз со ско­ростью движения объекта влево, вправо, вверх, вниз осуществляются благодаря содружественной деятельности глазод­вигательных мышц. Эти движения глаз дополняются движениями головы (по­ворот, наклон).

Плавные, непроизвольные следящие движения глаз за перемещающимся в поле зрения объектом, обеспечиваю­щие совмещение изображения на сет­чатке с центральной ямкой с точностью до 2° (фиксационный рефлекс). Эти движения глаз дополняются быстрыми непроизвольными движениями (скачкоо­бразными мелкими — саккадами), обе­спечивающими коррекцию совмещения

изображения на сетчатке с центральной ямкой.

При оценке неподвижного предмета и фиксации взора предот­вращается адаптация фоторецепторов с помощью быстрых непроизвольных по­стоянных содружественных движений глаз (типа незаметной мелкой вибра­ции — мелкие саккады). Это превра­щает постоянный раздражитель в пре­рывистый, так как световые лучи быстро смещаются от одних рецепторов сетчат­ки на другие, а поэтому их адаптация не успевает произойти.

Если заблокировать эти движения глаз, то окружающий нас мир, вследствие адаптации рецепторов сетчатки, станет трудноразличи­мым, каковым он является, например, у лягуш­ки. Глаза лягушки неподвижны, поэтому она хорошо различает только движущиеся предме­ты, например бабочек. Вот почему лягушка и приближается к змее, которая постоянно вы­брасывает наружу свой язык. Находящуюся в состоянии неподвижности змею лягушка раз­личает плохо, а ее движущийся язык она при­нимает за летающую бабочку.

При нарушении саккадических дви­жений глаз, например их содружествен-ности, при появлении нистагма зрение может ухудшаться. Непосредственно управляют наружными мышцами глаз fkmaf-мотонейроны ядер III (глазодвига­тельный), IV (блоковый), VI (отводя­щий) пар черепных нервов.

При смещении взора с одной дета­ли неподвижного объекта на другую и при чтении используются плавные про­извольные движения глаз.

Цветовое (хроматическое) зрение — это способность зрительной системы дифференцировать электромаг­нитные световые волны по их длине с формированием ощущения цвета. Каж­дый цвет имеет три характеристики: на­сыщенность (обеспечивается содержанием в нем чистого тона), яркость (зависит от примеси белого) и тон (определяется длиной волны чистого спектрального цвета, с которым схож рассматриваемый цвет). Цветовые оттенки возникают в результате смешения семи чистых тонов спектра. Последние, в свою очередь, об­разуются из трех основных, чистых цве­тов (тонов) — синего (435 нм), зеленого (546 нм) и красного (700 нм) (рис. 16.6). По мере уменьшения освещенности цветоощущение ухудшается — прежде других перестает различаться красный цвет, позднее всего — синий и фиоле­товый.

Согласно трехкомпонентной теории цветовосприятия Ломоносова—Юнга— Гельмгольца—Лазарева, в сетчатке име­ется три вида колбочек, каждый из ко­торых содержит специфический свето­чувствительный пигмент, обладающий наибольшей чувствительность к одному из трех основных, чистых цветов. Ком­бинации возбуждения различных кол­бочек приводят к ощущению различных цветов и оттенков. Равномерное возбуж­дение колбочек дает ощущение белого цвета. Наличие трех видов светочув­ствительных пигментов (трихромазии)

хорошо подтверждается клиническими наблюдениями. Так, отсутствие кол­бочек сопровождается полной цвето­вой слепотой (ахромазией), недостаток одного из видов колбочек — частичной цветовой слепотой. Цветоаномалии чаще встречаются у мужчин (8—10 %), чем у женщин (0,5 %), и обусловлены с отсутствием определенных генов в по­ловой непарной Х-хромосоме.

Встречаются протанопия (дальто­низм) — слепота на красный свет (опи­сана физиком Дж. Дальтоном); дейтера-нопия — невосприятие зеленого цвета, самая частая цветоаномалия, составля­ющая до 75 % случаев дихромазии; тританопия — цветовая слепота на фиоле­товый цвет и дефектное зрение на синий и желтый.

Цветооппонентная теория Э. Герин­га приложима к проводниковому и цен­тральному отделам зрительного анализа­тора. Она дополняет трехкомпонентную теорию цветовосприятия рецепторного уровня. Ее суть заключается в наличии анатомических специфических нейрон­ных механизмов, связывающих попар­но красный и зеленый, желтый и синий, черный и белый цвета, что сказывается на цветоощущениях.

Цветовая адаптация наиболее выра­жена к сине-фиолетовым волнам.

Восприятие цвета имеет не только эстетическое, но и чисто физиологиче­ское значение — различные цвета ока­зывают существенное влияние на орга­низм.

Красный цвет вызывает ощущение тепла, действует возбуждающе на психи­ку, усиливает эмоции, но быстро утом­ляет, приводит к напряжению мышц, повышению АД, учащению дыхания. Оранжевый цвет вызывает чувство ра­дости и благополучия, способствует пищеварению. Желтый цвет создает приподнятое настроение, стимулирует зрение и нервную систему — словом, это самый «веселый» цвет. Зеленый цвет действует освежающе и успокаи­вающе, благоприятен при бессоннице, переутомлении, понижает АД, общий тонус организма — это самый благо­приятный цвет для человека. Голубой цвет вызывает ощущение прохлады и действует успокаивающе на нервную систему, причем сильнее зеленого цве­та (особенно благоприятен голубой цвет для людей с повышенной нервной воз­будимостью); он больше, чем зеленый цвет, понижает АД и тонус мышц. Фио­летовый цвет не столько успокаивает, сколько расслабляет психику. Итак, создается впечатление, что человече­ская психика, следуя вдоль спектра от красного к фиолетовому, проходит всю гамму эмоций.

Исследуют цветовое зрение, что не­обходимо при профотборе, с помощью приборов (аномалоскопов) и таблиц; из последних наибольшее признание по­лучили таблицы Рабкина.

Световые и цветовые кон­трасты — это измененное восприя­тие объекта в зависимости от окружа­ющего фона. Если, например, рассма­тривать серый цвет на синем фоне, то он воспринимается как желтоватый, а на красном фоне серый цвет приоб­ретает зеленоватый оттенок (одновре­менные цветовые контрасты). После­довательный контраст наблюдается при переводе взгляда с цветового фона на белый. При переводе взора, например, с красного предмета на белый послед­ний воспринимается с зеленоватым от­тенком. Световой контраст встречается при рассматривании черно-белых пред­метов — например, серый круг на бе­лом фоне выглядит черным, на черном фоне — светлым.

Дополнительно: В сетчатку проникают и эфферентные нервные волокна, которые могут: образовывать синапы в месте контактов различных клеток сетчатки между собой и влиять на проведение информации в ее пределах (преимущественно на уровне синапсов между фоторецепторами и биполярами, а также биполярами и ганглиозными клетками), либо регулировать функциональное состояние ее элементов косвенно путем изменения уровня кровоснабжения сетчатки (в таком случае эфферентные нервные волокна, проникающие в сетчатку образуют синапы на гладкомышечных клетках сосудов)

87, №88 Человек воспринимает звук (механические колебания среды) в диа­пазоне 20—20 000 Гц. Колебания ниже 20 Гц (инфразвуки) и выше 20 тыс. Гц (ультразвуки) человеком не ощущаются. Воспринимаются следующие характери­стики звука.

Высота звука — определяется частотой колебаний. Колебания в гар­монической (синусоидальной) звуковой волне воспринимаются человеческим ухом как музыкальный тон. Колебания высокой частоты — это звуки высокого тона, колебания низкой частоты — зву­ки низкого тона. Звуки, издаваемые музыкальными инструментами, а так­же звуки человеческого голоса могут сильно различаться по высоте тона и по диапазону частот. Так, например, диапа­зон наиболее низкого мужского голоса (баса) составляет 80—400 Гц, а диапазон высокого женского голоса (сопрано) — 250-1050 Гц.

Громкость звука — определя­ется давлением на барабанную перепонку. Порог слышимости около — 10~10 атм, болевой порог — 10~4 атм. Единицей из­мерения громкости звука является бел (в практике обычно используется де­цибел — дБ, т.е. 0,1 бела). Ощущения громкости определяются взаимоотно­шением силы и высоты звука. Макси­мальная чувствительность слухового анализатора соответствует диапазону 1—3 тыс. Гц — «речевая зона».

Тембр звука — зависит от спек­тра, т.е. от состава, дополнительных ча­стот (обертонов), которые сопровож­дают основной тон. По тембру можно различить звуки одинаковой высоты и громкости, на чем основано узнавание людей по голосу.

Периферический отдел системы слу­ха ухо. Наружное ухо играет роль рупора, который усиливает звуки путем концентрации их в направлении барабанной перепонки, а также оно защищает последнюю от воздействий внешней среды.

Среднее ухо (рис. 16.7) пред­ставляет собой небольшую полость,

наполненную воздухом со слуховыми косточками и слуховой (евстахиевой) трубой; включает также ячейки сосце­видного отростка и отделено мембра­ной — барабанной перепонкой — от наружного слухового прохода. Слуховые косточки: рукоятка молоточка вплете­на в барабанную перепонку, другой его конец образует суставную поверхность с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране так называемого овального окна.

Усиление звука примерно в 20 раз происходит благодаря большей, по срав­нению с овальным окном, площади ба­рабанной перепонки. Интенсивность звукового давления может изменяться с помощью рефлекторного механизма аккомодации, который выражается в напряжении т. stapedius (мышцы, от­тягивающей стремечко от овального окна) и т. tensor tympani (мышцы, на­прягающей барабанную перепонку). Рефлекс замыкается на уровне стволо­вых отделов мозга. Аккомодация вы­полняет также защитную роль (сильные звуки уже через 80—100 мс активируют напряжение мышц, предохраняя тем са­мым рецепторный аппарат внутреннего уха от чрезмерного возбуждения и раз­рушения). Рефлекторное сокращение т. stapedius и т. tensor tympani возникает и при интенсивной мышечной нагрузке (тренировке у спортсменов). Этот меха­низм не успевает срабатывать в ответ на короткие сильные раздражения (взрыв, выстрел). Благодаря аккомодации че­ловек сохраняет способность различать звуки речевого диапазона даже в зашум-ленных условиях.

Давление в барабанной полости равно атмосферному, так как евстахиевая тру­ба (соединяет полость среднего уха с но­соглоткой) в состоянии бодрствования открывается каждую минуту, при жева­нии, глотании, во время сна — каждые 5 мин; она открывается также во время зевания. Если же внешнее давление ме­няется быстро (во время набора высоты или при снижении самолета), а глотания не происходит, то разность давлений в барабанной полости и в окружающей среде приводит к возникновению не­приятных ощущений («закладывание ушей») и снижению восприятия звуков вследствие натяжения барабанной пере­понки.

Таким образом, наружное и среднее ухо — это звукопроводящий аппарат.

Звуки проводятся также по костям черепа. Исследование воздушной и костной проводимости у пациента помогает врачу в постановке диагноза за­болевания.

Внутреннее ухо — это система сообщающихся заполненных жидкостью каналов и полостей в лаби­ринте толстой височной кости. Здесь расположены сразу два органа: орган слуха — улитка и орган равновесия — вестибулярный аппарат. Улитка — спи­рально извитой костный канал, имею­щий у человека 2,5 оборота, или завит­ка, и разделенный основной (базальной) мембраной и мембраной Рейснера на три узкие части (анатомы дали им на­звание «лестницы»). Верхний канал {ве­стибулярная лестница) начинается от овального окна, соединяется с нижним каналом (барабанная лестница) через геликотрему (отверстие в верхушке) и заканчивается круглым окном. Оба этих канала представляют собой единое целое и заполнены перилимфой, сходной по составу со спинномозговой жидкостью. Между верхним и нижним каналом на­ходится средний (средняя лестница). Он изолирован и заполнен эндолимфой.

Слуховые рецепторы расположены внутри среднего канала на базальной мембране (кортиев орган). Звуковые колебания передаются от стремечка на овальное окно, а оттуда сообщаются перилимфе. Колебания перилимфы в свою очередь распространяются на базальную мембрану. Имеются внутренние (около 3500 клеток) и наружные (около 12 тыс. клеток) рецепторы. На каждой клетке расположено около 100 соединенных между собой волосков — стереоцилий. Они пронизывают покровную мембрану кортиева органа.

Рецепторный потенциал в волоско-вых клетках возникает в результате коле­бания базальной мембраны и деформа­ции стереоцилий, что ведет к активации на их верхушках механоуправляемых К-каналов. Поскольку содержание К+ в эндолимфе больше, чем в рецепторной клетке, он диффундирует в клетку и де­поляризует ее согласно концентрацион­ному и электрическому градиентам. РП ведет к выделению медиатора (по-види­мому, глутамата) в базальной части во-лосковой клетки, синаптически связан­ной с дендритом афферентного нейрона спирального ганглия. Под действием медиатора на постсинаптической мем­бране окончания дендрита возникает ГП, обеспечивающий с помощью своего электрического поля возникновение ПД в окончании дендрита. Таким образом во внутреннем ухе механические коле­бания превращаются в электрические процессы.

Проводниковый отдел системы слуха (рис. 16.8). Первый нейрон проводни­кового отдела — биполярный, локали­зуется в спиральном ганглии; дендрит нейрона синаптически связан со слухо­вым рецептором кортиева органа. Аксо­ны первого нейрона формируют слуховой (кохлеарный) нерв, он проводит импуль­сы ко второму нейрону, расположенному в ядрах кохлеарного комплекса продол­говатого мозга. Аксоны вторых нейронов после частичного перекреста посылают переработанную информацию к меди­альному коленчатому телу метаталамуса

(третий нейрон), от него возбуждение поступает в кору большого мозга {(чет­вертый нейрон). Возбуждение поступает также в нижние бугры четверохолмия, которые формируют двигательные реф­лекторные реакции в ответ на звуковые раздражители, при этом вначале возни­кает рефлекс «что такое?».

Корковый отдел системы слуха, этот отдел локализуется в верхней части ви­сочной доли коры большого мозга (см. рис. 16.8, первичная слуховая кора — поля 41 и 42, вторичная — поля 21 и 22). Нервные импульсы от медиального коленчатого тела, в основном, направ­ляются в первичную слуховую кору. Вто­ричная кора активируется импульсами таламуса и от первичной коры. В ре­зультате взаимодействия возбуждений первичной и вторичной слуховых зон и ассоциативной коры (третичная зона для каждого анализатора) формируются соответствующие ощущения.

Корковые влияния на нижележащие отделы системы слуха преимущественно тормозные; благодаря им человек, при­слушиваясь, способен выделять из по­лифонии оркестра звучание лишь одно­го инструмента.

Особенности адаптации сенсорной системы слуха заключается в том, что она включает в себя и аккомодацию.хз что это значит

Пространственная (резонансная) теория была предложена Гельм-гольцем в 1863 году. Теория допускает, что базилярная мембрана состоит из серии сегментов, каждый из которых резонирует в ответ на воздействие определенной частоты звукового сигнала. По аналогии со струнными инструментами звуки высокой частоты приводят в колебательное движение участок базилярной мембраны с короткими волокнами у основания улитки, а звуки низкой частоты - участок мембраны с длинными волокнами у верхушки улитки. При подаче и восприятии сложных звуков одновременно начинают колебаться несколько участков мембраны. Чувствительные клетки спирального органа воспринимают эти колебания и передают но нерву слуховым центрам.

Выводы из теории Гельмгольца:

1.   Улитка является тем звеном слухового анализатора, где происходит первичный анализ звуков.

2.   Каждому простому звуку присущ определенный участок на базилярной мембране.

3.   Низкие звуки приводят в колебательные движения участки базилярной мембраны, расположенные у верхушки улитки, а высокие - у ее основания.

Плюсы:

•    позволила объяснить основные свойства уха: определение высоты, силы и тембра.

•    теория получила подтверждение в клинике. Минусы:

•    современные данные не повреждают возможность резонирования "отдельных струн" базилярной мембраны.

Развивают теорию Гельмгольца такие авторы, как Бекеши, Флетчер, Уи-вер и др. В последние годы считают, что в ответ на звуковое раздражение реагирует не вся система внутреннего уха, а происходит продольное сокращение отдельных чувствительных клеток. Механизм этого процесса - биохимические процессы (активация белка миозина).

Каким образом происходит трансформация механической энергии звуковых колебаний в нервное возбуждение - в основу электрофизиологического метода исследования данной проблемы положено учение Н.Е.Введенского

Теория «бегущей волны» Г.Бекеши (1960): под действием звука возникают колебания базальной мембраны кортиева органа в виде бегущей волны, максимальная амплитуда которой зависит от частоты звука По гидродинамической теории Бекеши звуковая волна, проходя в перилимфе обеих лестниц, вызывает колебания основной мембраны в виде бегущей волны. В зависимости от частоты звука происходит максимальный изгиб мембраны на ограниченном её участке. Низкие звуки вызывают бегущую волну по всей длине основной мембраны, вызывая максимальное смещение её около верхушки улитки. Среднечастотные тоны максимально смещают середину основной мембраны, а высокие звуки - в области основного завитка спирального органа, где базилярная мембрана более упругая и эластичная.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]