
- •Каковы особенности нервной и гуморальной регуляции функций?
- •2.Принципы управления в живых системах.
- •3.В чем заключается сущность системного принципа регуляции функций?
- •3.Типы транспорта веществ через биологические мембраны
- •4.Какова природа мембранного потенциала?
- •5.6.Природа и механизм развития потенциала действия.
- •7.Принцип работы натрий-калиевого насоса.
- •8.Законы раздражения возбудимых тканей.
- •9.Распространение возбуждения по миелинизированнным и немиелинизированным волокнам.
- •9.Какими способами осуществляется гуморальная регуляция
- •10.Дайте определение гормонам. Какие виды гормонов различают?
- •11.Гипоталамо-гипофизарная система.
- •12.Перечислите гормоны гипофиза, их функции и особенности секреции.
- •14.Перечислите «истинные» эндокринные железы, их гормоны и функции.
- •15.Перечислите гормоны «смешанных» желез внутренней секреции и их функции. Какие изменения эндокринных функций происходят при различных состояниях?
- •16.Какие механизмы обеспечивают общий адаптационный синдром?
- •Этиология адаптационного синдрома
- •17.Классификация и функции мышечных волокон.
- •18. Особенности нервно-мышечного аппарата.
- •19.Механизмы сокращения и расслабления мышечного волокна.
- •20.Режимы и виды мышечных сокращений.
- •21.Каковы морфофункциональные основы мышечной силы?
- •22. Основные принципы организации движений.
- •23.Приведите примеры классификации условных рефлексов.
- •24.При каких условиях образуется условный рефлекс?
- •25.Каков механизм образования условного рефлекса?
- •26.Общий план структурно-функциональной организации анализаторов.
- •IV. По скорости адаптации.
- •VI. По структурно-функциональной организации.
- •27.Кодирование сенсорной информации
- •28. Особенности соматовисцентральной сенсорной системы.
- •29. Тактильный анализатор.
- •30.Терморецепция.
- •Проприоцептивная чувствительность.
- •Висцеральная чувствительность.
- •Зрительная сенсорная система и ее роль в регуляции движений.
- •Слуховая сенсорная система и ее роль в регуляции движений.
- •Проведение звука.
- •Вестибулярная сенсорная система.
- •Обонятельный анализатор.
- •Вкусовой анализатор.
- •Дайте характеристику сердечной мышцы: возбудимость, проводимость, сократимость, автоматия.
- •Как осуществляется проведение возбуждения в сердечной мышце? Опишите структуру и функции артерий, вен, капилляров.
- •Системный и региональный кровоток, его регуляция.
- •Как изменяется кровоток при мышечной работе?
- •Дайте определение специфическому и неспецифическому иммунитету.
- •Адаптация сердца к физическим нагрузкам. Физиологическая и патологическая гипертрофия сердца.
- •Как измеряют артериальное давление крови? Чем обусловлены показатели артериального давления?
- •Что такое внешнее и тканевое дыхание?
- •Каковы функции внешнего дыхания, его регуляция в покое и при мышечной работе?
- •Опишите дыхательный цикл.
- •Каков состав вдыхаемого, выдыхаемого и альвеолярного воздуха? Перечислите легочные объемы. Как они изменяются при интенсивных физических нагрузках?
- •В каком виде транспортируется кровью кислород и углекислый газ? Что определяет кислородную емкость крови?
- •Каким образом осуществляется газообмен между альвеолярным воздухом и кровью, между кровью и тканями?
- •Каким образом осуществляется регуляция дыхания?
- •Физиологические сдвиги при задержке дыхания и при гипервентиляции.
Каким образом осуществляется регуляция дыхания?
Регуляция внешнего дыхания представляет собой физиологический процесс управления легочной вентиляцией, который направлен на достижение конечного приспособительного результата — обеспечение оптимального газового состава внутренней среды организма (крови, интерстициальной жидкости, ликвора) в постоянно меняющихся условиях его жизнедеятельности. Управление дыханием осуществляется по принципу обратной связи: при отклонении от оптимальных величин регулируемых параметров (рН, напряжение О, и СО,) изменение вентиляции направлено на их нормализацию. Избыток, например, водородных ионов во внутренней среде организма (ацидоз) приводит к усилению вентиляции, а их недостаток (алкалоз) — к уменьшению интенсивности дыхания. В обоих случаях изменение вентиляции является средством достижения главной цели регуляции дыхания — оптимизации газового состава внутренней среды (прежде всего, артериальной крови).
Регуляция внешнего дыхания осуществляется путем рефлекторных реакций, возникающих в результате возбуждения специфических рецепторов, заложенных в легочной ткани и сосудистых рефлексогенных зонах. Центральный аппарат регуляции дыхания представляют нервные образования спинного мозга, продолговатого мозга и вышележащих отделов нервной системы. Основная функция управления дыханием осуществляется дыхательными нейронами ствола головного мозга, которые передают ритмические сигналы в спинной мозг к мотонейронам дыхательных мышц.
Физиологические сдвиги при задержке дыхания и при гипервентиляции.
Дыхание осуществляет газообмен между внешней средой и альвеолярным воздухом, состав которого в нормальных условиях варьирует в узком диапазоне. При гипервентиляции содержание кислорода повышается (на 40-50 % от исходного), но при дальнейшей гипервентиляции (около минуты и более) содержание CO2 в альвеолах значительно снижается, в результате чего уровень углекислоты в крови падает ниже нормального (такое состояние называется гипокапния). Гипокапния в легких при углубленном дыхании сдвигает pH в щелочную сторону, что изменяет активность ферментов и витаминов. Это изменение активности регуляторов обмена веществ нарушает нормальное протекание обменных процессов и ведет к гибели клеток. Для сохранения постоянства CO2 в легких в процессе эволюции возникли следующие механизмы защиты:
спазмы бронхов и сосудов;
увеличение продукции холестерина в печени как биологического изолятора, уплотняющего клеточные мембраны в легких и сосудах;
снижение артериального давления (гипотония), уменьшающее выведение СО2 из организма.
Но спазмы бронхов и сосудов уменьшают приток кислорода к клеткам мозга, сердца, почек и других органов. Уменьшение СО2 в крови повышает связь кислорода и гемоглобина и затрудняет поступление кислорода в клетки (эффект Вериго - Бора). Уменьшение кислородного притока в ткани вызывает кислородное голодание тканей - гипоксию. Гипоксия в свою очередь приводит сначала к потере сознания, а потом к смерти тканей головного мозга.
Апно́э (др.-греч. ἄπνοια, букв. «безветрие»; отсутствие дыхания) — остановка дыхательных движений.
В частности, может наблюдаться при обеднении крови углекислотой, вызванном чрезмерной вентиляцией лёгких (например, после усиленного искусственного или произвольного дыхания). Апноэ можно также вызвать в эксперименте сильным повышением артериального кровяного давления, возбуждающего рецепторы некоторых сосудов (например, каротидного синуса)[1].
Так называемое «ложное апноэ» иногда наступает при сильном раздражении кожи (например, при погружении в воду на большую глубину тела в холодную воду).
Апноэ может наступать при некоторых болезнях. Например, остановка дыхания случается в результате приступов у больных бронхиальной астмой икоклюшем. Также бывает синдром обструктивного апноэ сна[2], вызываемый сужением и спадением верхних дыхательных путей. Этот вид апноэ наблюдается у людей, которые храпят во сне. Заболевание повышает риск развития сердечно-сосудистых осложнений, диабета, ожирения, нарушает структуру сна и приводит к появлению дневной сонливости. Требует специального лечения, обычно - посредством проведения СИПАП-терапии [3]. Центральное апноэ сна подразумевает остутствие «дыхательных» импульсов из мозга к дыхательным мышцам вследствие угнетения дыхательного центра, находящегося в головном мозге. Центральное апноэ сна возникает на порядок реже, чем обструктивное апноэ и относится к группе неврологических заболеваний.
Также под апноэ может пониматься задержка дыхания по желанию самого субъекта. В этом смысле термин «апноэ» часто используется во фридайвинге.