
- •Оглавление
- •Сети эвм: понятие, становление, преимущества сетевой обработки данных.
- •Распределение адресного пространства для архивной среды хранения информации.
- •Арифметико-логические устройства и блок ускоренного умножения. Схемы наращивания алу при последовательном и параллельном переносах.
- •Основные характеристики вычислительных сетей.
- •Распределения адресного пространства для физической оперативной памяти с переменными страницами.
- •Архитектура и схемотехника бис/сбис с программируемыми структурами (cpld, fpga, смешанные структуры).
- •Классификация вычислительных сетей. Отличия классических lan и gan, тенденция их сближения.
- •1. По территориальной рассредоточенности
- •2. Масштаб предприятия или подразделения, кому принадлежит сеть
- •Организация и принцип работы кэш-памяти. Способы организации кэш-памяти. Обновление информации.
- •Типовые структуры вычислительных сетей.
- •Задача размещения для виртуального адресного пространства.
- •Методы защиты оперативной памяти
- •Методы коммутации в вычислительных сетях. Способы мультиплексирования каналов связи.
- •2. Коммутация сообщений
- •3. Коммутация пакетов
- •Основные задачи управления виртуальной оперативной памятью и их характеристики.
- •Особенности работы с памятью мп I 386. Механизм дескрипторов. Назначение.
- •Задачи системотехнического проектирования сетей эвм
- •Сегментно-страничная схема функционирования виртуальной оперативной памяти
- •Микропроцессоры: общая структура, назначение основных блоков, принцип работы, применение
- •Анализ задержек передачи сообщений в сетях передачи данных
- •Сегментная схема функционирования виртуальной оперативной памяти
- •Способы организации вычислительных систем. Классификация вычислительных систем
- •Задача оптимального выбора пропускных способностей каналов связи (прямая и обратная постановки).
- •Страничная по требованию схема функционирования виртуальной оперативной памяти.
- •Способы организации памяти вычислительных систем.
- •Семиуровневая модель взаимодействия открытых систем. Функции уровней
- •Страничная схема функционирования виртуальной оперативной памяти
- •Система прерываний программ. Функции и назначение.
- •Прохождение данных через уровни модели osi. Функции уровней
- •Сегментно-страничная структуризация памяти
- •Поддержка мультизадачности в мп i386. Сегмент состояния задачи
- •Протоколы и функции канального уровня.
- •Сегментная структуризация памяти.
- •Классификация триггерных схем, примеры, параметры. Основные структуры запоминающих устройств (2d, 3d), структурные методы повышения быстродействия запоминающих устройств.
- •Протоколы повторной передачи. Анализ производительности.
- •Страничная структуризация памяти с переменными страницами
- •Регистры – общие принципы построения, сдвиг информации, способы записи и считывания, параметры.
- •Сдвигающие регистры
- •Универсальные регистры
- •Протоколы и функции сетевого уровня. Таблицы маршрутизации.
- •Страничная структуризация памяти с фиксированными страницами
- •Принципы построения счетчиков, суммирующие и вычитающие счетчики, логическая структура, параметры
- •Классификация алгоритмов маршрутизации
- •По способу выбора наилучшего маршрута.
- •По способу построения таблиц маршрутизации
- •По месту выбора маршрутов (маршрутного решения)
- •По виду информации которой обмениваются маршрутизаторы
- •Многоочередная дисциплина обслуживания процессов с различными приоритетами в ос
- •Устройства кодирования и декодирования цифровой информации, примеры практической реализации схем и их функционирование
- •5. Кодирование текстовой информации
- •Задача оптимальной статической маршрутизации
- •Многоочередная дисциплина обслуживания процессов с равными приоритетами в ос.
- •Логическая основа построения сумматоров, способы организации переноса, пример практической реализации
- •Стек тср/ip. Протоколы прикладного уровня.
- •Дисциплины распределения ресурсов в ос: fifo, lifo и круговой циклический алгоритм, их достоинства и недостатки.
- •Классификация системы логических элементов, типовые схемы, параметры и характеристики
- •Вопрос 2.
- •Системы адресации в стеке тср/ip.
- •Концепция "виртуализации" в ос
- •1.Паравиртуализация
- •2.Трансляция двоичного кода
- •3.Виртуализация процессора
- •4.Виртуализацимя памяти
- •5.Виртализация ввода/вывода
- •1 Подход:
- •2 Подход:
- •Принципы построения счетчиков, суммирующие и вычитающие счетчики, логическая структура, параметры
- •Простейший суммирующий асинхронный счётчик
- •Простейший вычитающий асинхронный счётчик
- •Протокол ip. Протокол ip – internetprotocol
- •Структура информации заголовка ip
- •Понятие "ресурс" в ос. Классификация ресурсов.
- •Классификация триггерных схем, примеры, параметры. Основные структуры запоминающих устройств (2d, 3d), структурные методы повышения быстродействия запоминающих устройств.
- •Классификация триггеров
- •Структура 2d
- •Структура 3d
- •Структурные методы повышения быстродействия запоминающих устройств
- •Свойства и классификация процессов в ос.
- •Микропроцессоры: общая структура, назначение основных блоков, принцип работы, применение
- •Десятичный корректор, аккумулятор, регистр аккумулятора и временного хранения и регистр признаков.
- •Протокол tcp.
- •Смена состояний процессов в ос. Диспетчеризация и управление процессами.
- •Организация и принцип работы кэш-памяти. Способы организации кэш-памяти. Обновление информации
- •Алгоритм выполнения операции передачи слова из кэш в процессор
Изолированные алгоритмы (локальные) – нет никакого обмена маршрутной информацией и каждый маршрутизатор принимает решение на основании той информации, которую он сам собрал.
Централизованные – вся маршрутная информация со всех маршрутизаторов стекается в сетевой маршрутный центр – он ответственный за определение оптимальных маршрутов и сбор маршрутной информации. Возможны 2 подхода:
Подход виртуального канала – маршрут определяется на основе оптимальной информации, посылаемой во все промежуточные маршрутизаторы. Недостатком является уязвимость маршрутного центра
Подход формирования по таблице для каждого маршрутизатора.
Распределенные – это самые распространенные алгоритмы, где все маршрутизаторы участвуют в сборе и распространении маршрутной информации и работа по выбору наилучшего маршрута распределена между всеми маршрутизаторами.
По виду информации которой обмениваются маршрутизаторы
Все алгоритмы делятся на 2 класса:
Дистанционно-векторные алгоритмы – RIP протокол (протокол маршрутной информации). В дистанционно-векторном: каждый маршрутизатор периодически всем своим соседям передаёт вектор сообщения, где указывает адреса всех известных ему подсетей и расстояние до них, в качестве (расстояния используется промежуточные узлы).
Каждый маршрутизатор периодически всем своим соседям передает вектор сообщений, где указывается адреса известных ему подсетей и расстояния до них от данного маршрутизатора.
Недостатки:
Плохая адаптация к отказам маршрутизаторов, интерфейсов, подсетей.
Возможность возникновения маршрутных петель
Данный алгоритм используется для небольших сетей (количество ХАП-ов не больше 15 единиц)
Для устранения этих недостатков каждому маршруту присваивается время жизни (TTL=180 сек) за которое если информация не обновляется – то маршрут «умирает», прекращает действовать. Если маршрутизатор вышел из строя – то в качестве расстояния указывается 16, то есть ∞
Главная причина всех недостатков – это получение информации через соседних маршрутизаторов, а не напрямую (это называется отсутствием полной нужной информации).
Алгоритмы состояния связи – OSPF протокол
OSPF протокол – Open Shortest Path First – открытый протокол кратчайшего маршрута – в стеке протокола TCP/IP.
NLSP протокол – Netware Link Services Protocol – используется для сетевых служб, указанных в различных подсетях, с целью управления – принадлежит стеку протоколов IPX/SPX. IS-IS – Intermediate System to Intermediate System – подмножество модели OSI.
Каждый маршрутизатор обеспечивается необходимой и точной (достаточной) информацией для построения адекватной (точной) топологии сети. Для точного построения графа-связи сети в данной топологии вершинами выступают маршрутизаторы и подсети.
Принцип действия:
Каждый маршрутизатор распространяет соседям о всех своих близких соседях:
Адрес соседней подсети
Тип интерфейса (М-М (маршрутизатор – марш) и М-S (марш – сеть) )
Метрика интерфейса (пропускные способности каждого из путей, время задержки и метрика надежности)
Соседний маршрутизатор получает информацию без коррекции, и через некоторое время все маршрутизаторы будут иметь полную информацию о всех подсетях и маршрутизаторах. Вся информация записывается в Базу Данных, после чего каждый маршрутизатор знает топологию, определяет кратчайшие маршруты для всех подсетей.
Для этого используется алгоритм Дейкстра – алгоритм определения кратчайшего маршрута, где каждое звено этого маршрута записывается в таблицу маршрутизации. Вычисления происходят по всей метрике.
Маршрутизатор не имеет сетевого адреса!
Для проверки в каждый маршрутизатор пересылается сообщение каждые 10 сек и если ответа нет, то таблица корректируется без учета вышедшего из строя маршрутизатора (в т.ч. поэтому – адаптивный алгоритм).
Топология сети в течении длительной работы сети не меняется, информационные потоки тоже не меняются после их распределения, однако реально при стабильной топологии потоки могут меняться, именно поэтому более оптимальным является адаптивный алгоритм.
Cm = f (Функциональные сетевые компоненты ФСК)