- •26.10.2007 Г., протокол № 2
- •Введение
- •Глава 1 элементы математической статистики
- •1.2. Генеральная совокупность и выборка
- •1.2. Обработка вариационного ряда
- •Группировка вариант в классы при дискретной изменчивости признака
- •1.3. Показатели описательной статистики
- •Форма записи и расчета среднеквадратического отклонения
- •Сравнительная оценка состава работников предприятия
- •1.4. Оценка статистических параметров по выборочным данным
- •1.5. Теоретические функции распределения
- •1.6. Статистические критерии различия
- •Форма обработки вариант в независимых совокупностях
- •Форма обработки данных сопряженных наблюдений
- •Сравнение эмпирических и теоретических частот с использованием критерия Пирсона
- •Глава 2 дисперсионный анализ
- •2.1. Однофакторный дисперсионный анализ
- •Однофакторный дисперсионный анализ
- •Результаты однофакторного дисперсионного анализа
- •2.2. Двухфакторный дисперсионный анализ
- •Двухфакторный дисперсионный комплекс
- •Результаты двухфакторного дисперсионного анализа
- •Глава 3 кластерный анализ
- •Число разбиений в зависимости от их заданной доли и вероятности
- •Число разбиений в зависимости от сочетаний числа кластеров и объектов
- •3.1. Этапы работ в кластерном анализе
- •3.2. Вроцлавская таксономия
- •3.3. Метод дендро-дерева б. Берри
- •Количественные показатели для зонирования города
- •Нормализованные безразмерные данные
- •Глава 4 информационный анализ
- •4.1. Показатели неопределенности объектов
- •Расчет показателя энтропии для установления оптимального времени отбора образцов
- •4.2. Применение информационного анализа в картографии
- •Глава 5 корреляционный анализ
- •5.1. Линейная корреляция
- •Исходные данные для расчета коэффициента корреляции
- •5.2. Нелинейная корреляция
- •Исходные данные по упругости водяного пара
- •5.3. Частная (парциальная) корреляция
- •Исходные данные для расчета коэффициентов частной корреляции
- •5.4. Понятие о множественной корреляции
- •5.5. Оценка различий коэффициентов корреляции
- •5.6. Ранговая корреляция
- •Оценка ландшафта для рекреационной цели
- •Расчет рангового коэффициента корреляции
- •Глава 6 регрессионный анализ
- •6.1. Линейная зависимость
- •Расчет данных для уравнения линейной зависимости
- •Расчет данных для определения точности выравнивания линии
- •6.2. Гиперболическая зависимость
- •Расчет данных для уравнения линейной зависимости
- •6.3. Параболическая зависимость
- •Расчет данных для уравнения параболической зависимости
- •6.4. Множественная регрессия
- •Расчет данных для уравнения линейной множественной регрессии
- •Расчет данных для критерия хи-квадрат
- •Глава 7 факторный анализ
- •7.1. Сущность и возможности применения
- •7.2. Последовательность операций
- •Редуцированная корреляционная матрица Rx
- •Квадрат корреляционной матрицы
- •Показатели четвертой и восьмой степени корреляционной матрицы
- •Квадрат корреляционной матрицы
- •Матрица произведений
- •Матрица первых остаточных коэффициентов корреляции r1
- •Вычисление коэффициентов при факторе f2
- •Глава 8 методы линейного программирования
- •8.1. Составные части общей модели линейного программирования
- •8.2. Распределительная модель линейного программирования
- •8.3. Правила работы с матрицей
- •Допустимые планы перевозок грузов
- •8.4. Метод потенциалов
- •8.5. Дельта-метод Аганбегяна
- •8.6. Модификация моделей транспортных задач
- •8.6.1.Открытая транспортная задача
- •8.6.2. Максимизация целевой функции
- •8.6.3. Ограничения по времени транспортировки продукции
- •Учет времени перевозки продукции
- •8.6.3. Транспортно-производственная задача
- •8.6.4. Многоэтапная транспортная задача
- •8.6.5. Многопродуктовая транспортная задача
- •8.6.6. Лямбда-задача
- •Глава 9 методы теории графов
- •9.1. Элементы теории графов
- •9.2. Топологический анализ сетей
- •9.3. Сетевые постановки транспортных задач
- •9.4. Сетевая постановка открытой транспортной задачи
- •9.5. Транспортно-производственная задача
- •9.6. Классификация с использованием графов
- •Глава 10 динамические ряды
- •10.1. Показатели динамического ряда
- •10.2. Сглаживание динамических рядов
- •10.3. Выравнивание по способу наименьших квадратов
- •Глава 11 математическое моделирование в географии
- •11.1. Математическое моделирование природных и общественных процессов
- •Глава 12 географическое поле
- •12.1. Операции над статистическими поверхностями
- •12.2. Методика составления карт изокоррелят
- •Литература Основная
- •Дополнительная
- •Приложения
- •1. Таблица достаточно больших чисел
- •2. Случайные числа
- •3. Значение критерия τ в зависимости от объема выборки n
- •4. Значения критерия Стьюдента t при различных уровнях значимости
- •6. Значения критерия хи-квадрат (Пирсона)
- •5. Критические значения f (критерия Фишера)
- •7. Минимальные существенные значения коэффициентов корреляции
- •8. Соотношение между r и z' для z' значений от 0 до 5*
- •9. Значения коэффициента корреляции рангов Спирмена для двусторонних пределов уровня значимости α
- •10. Алгоритм вычисление основных показателей описательной статистики и критерия Стьюдента в Microsoft Office Excel 2003
- •11. Алгоритм проведения однофакторного дисперсионного анализа в Microsoft Office Excel 2003
- •12. Алгоритм проведения корреляционного и регрессионного анализов в Microsoft Office Excel 2003
- •13. Алгоритм проведения кластерного анализа в Statsoft Statistica 6.0
- •14. Алгоритм проведения факторного анализа в Statsoft Statistica 6.0
- •15. Решение задачи на оптимальность
- •Оглавление
10.2. Сглаживание динамических рядов
Углубленный анализ временных рядов требует использования более сложных методик математической статистики. При наличии в динамических рядах значительной случайной ошибки (шума) применяют один из двух простых приемов – сглаживание или выравнивание путем укрупнения интервалов и вычисления групповых средних. Этот метод позволяет повысить наглядность ряда, если большинство «шумовых» составляющих находятся внутри интервалов. Однако, если «шум» не согласуется с периодичностью, распределение уровней показателей становится грубым, что ограничивает возможности детального анализа изменения явления во времени.
Более точные характеристики получаются, если используют скользящие средние – широко применяемый способ для сглаживания показателей среднего ряда. Он основан на переходе от начальных значений ряда к средним в определенном интервале времени. В этом случае интервал времени при вычислении каждого последующего показателя как бы скользит по временному ряду.
Применение скользящего среднего полезно при неопределенных тенденциях динамического ряда или при сильном воздействии на показатели циклически повторяющихся выбросов (резко выделяющиеся варианты или интервенция).
Чем больше интервал сглаживания, тем более плавный вид имеет диаграмма скользящих средних. При выборе величины интервала сглаживания необходимо исходить из величины динамического ряда и содержательного смысла отражаемой динамики. Большая величина динамического ряда с большим числом исходных точек позволяет использовать более крупные временные интервалы сглаживания (5, 7, 10 и т. д.). Если процедура скользящего среднего используется для сглаживания не сезонного ряда, то чаще всего величину интервала сглаживания принимают равной 3 или 5.
Приведем пример вычисления скользящего среднего числа хозяйств с высокой урожайностью (более 30 ц/га) (табл. 10.3).
Таблица 10.3
Сглаживание динамического ряда укрупнением интервалов и скользящим средним
Учетный год |
Число хозяйств с высокой урожайностью |
Суммы за три года |
Скользящие за три года |
Скользящие средние |
1982 |
84 |
|
|
90,0 |
1983 |
94 |
270 |
90,0 |
89,7 |
1984 |
92 |
|
|
88,7 |
1985 |
83 |
|
|
87,3 |
1986 |
91 |
262 |
87,3 |
87,0 |
1987 |
88 |
|
|
86,7 |
1988 |
82 |
|
|
83,0 |
1989 |
90 |
249 |
83,0 |
82,3 |
1990 |
77 |
|
|
82,3 |
1991 |
80 |
|
|
82,6 |
1992 |
90 |
248 |
82,7 |
82,7 |
1993 |
78 |
|
|
|
Примеры вычисления скользящего среднего:
1982 г. (84 + 94 + 92) / 3 = 90,0;
1983 г. (94 + 92 + 83) / 3 = 89,7;
1984 г. (92 + 83 + 91) / 3 = 88,7;
1985 г. (83 + 91 + 88) / 3 = 87,3.
Составляется график. На оси абсцисс указываются годы, на оси ординат – число хозяйств с высокой урожайностью. Указываются координаты числа хозяйств на графике и соединяют полученные точки ломаной линией. Затем указываются координаты скользящей средней по годам на графике и соединяются точки плавной полужирной линией.
Более сложным и результативным методом является сглаживание (выравнивание) рядов динамики с помощью различных функций аппроксимации. Они позволяют формировать плавный уровень общей тенденции и основную ось динамики.
Наиболее эффективным методом сглаживания с помощью математических функций является простое экспоненциальное сглаживание. Этим методом учитываются все предшествующие наблюдения ряда по формуле:
St = α ∙ Xt + (1 – α) ∙ St–1 ,
где St – каждое новое сглаживание в момент времени t; St – 1 – сглаженное значение в предыдущий момент времени t –1; Xt – фактическое значение ряда в момент времени t; α – параметр сглаживания.
Если α = 1, то предыдущие наблюдения полностью игнорируются; при величине α = 0 игнорируются текущие наблюдения; значения α между 0 и 1 дают промежуточные результаты. Изменяя значения этого параметра можно подобрать наиболее приемлемый вариант выравнивания. Выбор оптимального значения α осуществляется путем анализа полученных графических изображений исходной и выравненной кривых, либо на основе учета суммы квадратов ошибок (погрешностей) вычисленных точек. Практическое использование этого метода следует проводить с использованием ЭВМ в программе MS Excel. Математическое выражение закономерности динамики данных можно получить с помощью функции экспоненциального сглаживания.
