- •26.10.2007 Г., протокол № 2
- •Введение
- •Глава 1 элементы математической статистики
- •1.2. Генеральная совокупность и выборка
- •1.2. Обработка вариационного ряда
- •Группировка вариант в классы при дискретной изменчивости признака
- •1.3. Показатели описательной статистики
- •Форма записи и расчета среднеквадратического отклонения
- •Сравнительная оценка состава работников предприятия
- •1.4. Оценка статистических параметров по выборочным данным
- •1.5. Теоретические функции распределения
- •1.6. Статистические критерии различия
- •Форма обработки вариант в независимых совокупностях
- •Форма обработки данных сопряженных наблюдений
- •Сравнение эмпирических и теоретических частот с использованием критерия Пирсона
- •Глава 2 дисперсионный анализ
- •2.1. Однофакторный дисперсионный анализ
- •Однофакторный дисперсионный анализ
- •Результаты однофакторного дисперсионного анализа
- •2.2. Двухфакторный дисперсионный анализ
- •Двухфакторный дисперсионный комплекс
- •Результаты двухфакторного дисперсионного анализа
- •Глава 3 кластерный анализ
- •Число разбиений в зависимости от их заданной доли и вероятности
- •Число разбиений в зависимости от сочетаний числа кластеров и объектов
- •3.1. Этапы работ в кластерном анализе
- •3.2. Вроцлавская таксономия
- •3.3. Метод дендро-дерева б. Берри
- •Количественные показатели для зонирования города
- •Нормализованные безразмерные данные
- •Глава 4 информационный анализ
- •4.1. Показатели неопределенности объектов
- •Расчет показателя энтропии для установления оптимального времени отбора образцов
- •4.2. Применение информационного анализа в картографии
- •Глава 5 корреляционный анализ
- •5.1. Линейная корреляция
- •Исходные данные для расчета коэффициента корреляции
- •5.2. Нелинейная корреляция
- •Исходные данные по упругости водяного пара
- •5.3. Частная (парциальная) корреляция
- •Исходные данные для расчета коэффициентов частной корреляции
- •5.4. Понятие о множественной корреляции
- •5.5. Оценка различий коэффициентов корреляции
- •5.6. Ранговая корреляция
- •Оценка ландшафта для рекреационной цели
- •Расчет рангового коэффициента корреляции
- •Глава 6 регрессионный анализ
- •6.1. Линейная зависимость
- •Расчет данных для уравнения линейной зависимости
- •Расчет данных для определения точности выравнивания линии
- •6.2. Гиперболическая зависимость
- •Расчет данных для уравнения линейной зависимости
- •6.3. Параболическая зависимость
- •Расчет данных для уравнения параболической зависимости
- •6.4. Множественная регрессия
- •Расчет данных для уравнения линейной множественной регрессии
- •Расчет данных для критерия хи-квадрат
- •Глава 7 факторный анализ
- •7.1. Сущность и возможности применения
- •7.2. Последовательность операций
- •Редуцированная корреляционная матрица Rx
- •Квадрат корреляционной матрицы
- •Показатели четвертой и восьмой степени корреляционной матрицы
- •Квадрат корреляционной матрицы
- •Матрица произведений
- •Матрица первых остаточных коэффициентов корреляции r1
- •Вычисление коэффициентов при факторе f2
- •Глава 8 методы линейного программирования
- •8.1. Составные части общей модели линейного программирования
- •8.2. Распределительная модель линейного программирования
- •8.3. Правила работы с матрицей
- •Допустимые планы перевозок грузов
- •8.4. Метод потенциалов
- •8.5. Дельта-метод Аганбегяна
- •8.6. Модификация моделей транспортных задач
- •8.6.1.Открытая транспортная задача
- •8.6.2. Максимизация целевой функции
- •8.6.3. Ограничения по времени транспортировки продукции
- •Учет времени перевозки продукции
- •8.6.3. Транспортно-производственная задача
- •8.6.4. Многоэтапная транспортная задача
- •8.6.5. Многопродуктовая транспортная задача
- •8.6.6. Лямбда-задача
- •Глава 9 методы теории графов
- •9.1. Элементы теории графов
- •9.2. Топологический анализ сетей
- •9.3. Сетевые постановки транспортных задач
- •9.4. Сетевая постановка открытой транспортной задачи
- •9.5. Транспортно-производственная задача
- •9.6. Классификация с использованием графов
- •Глава 10 динамические ряды
- •10.1. Показатели динамического ряда
- •10.2. Сглаживание динамических рядов
- •10.3. Выравнивание по способу наименьших квадратов
- •Глава 11 математическое моделирование в географии
- •11.1. Математическое моделирование природных и общественных процессов
- •Глава 12 географическое поле
- •12.1. Операции над статистическими поверхностями
- •12.2. Методика составления карт изокоррелят
- •Литература Основная
- •Дополнительная
- •Приложения
- •1. Таблица достаточно больших чисел
- •2. Случайные числа
- •3. Значение критерия τ в зависимости от объема выборки n
- •4. Значения критерия Стьюдента t при различных уровнях значимости
- •6. Значения критерия хи-квадрат (Пирсона)
- •5. Критические значения f (критерия Фишера)
- •7. Минимальные существенные значения коэффициентов корреляции
- •8. Соотношение между r и z' для z' значений от 0 до 5*
- •9. Значения коэффициента корреляции рангов Спирмена для двусторонних пределов уровня значимости α
- •10. Алгоритм вычисление основных показателей описательной статистики и критерия Стьюдента в Microsoft Office Excel 2003
- •11. Алгоритм проведения однофакторного дисперсионного анализа в Microsoft Office Excel 2003
- •12. Алгоритм проведения корреляционного и регрессионного анализов в Microsoft Office Excel 2003
- •13. Алгоритм проведения кластерного анализа в Statsoft Statistica 6.0
- •14. Алгоритм проведения факторного анализа в Statsoft Statistica 6.0
- •15. Решение задачи на оптимальность
- •Оглавление
Глава 10 динамические ряды
Ряд расположенных в хронологической последовательности значений статистических показателей представляет собой временной (динамический) ряд.
Статистические показатели, характеризующие изучаемый объект, называют уровнями ряда. В динамическом ряду они могут быть абсолютными, относительными или средними величинами. Ряды динамики, представленные за определенный промежуток времени, называются интервальными. В результате суммирования уровней интервального динамического ряда получаем накопленные итоги. Вследствие многих обстоятельств однородность величин, составляющих динамический ряд, может нарушаться, и таким образом изменяется сопоставимость уровней динамического ряда. Если каждый уровень динамического ряда сравнивается с одним и тем же предшествующим уровнем, как правило, первоначальным – это сравнение с первоначальной базой. Если сравнение проводится с предшествующим уровнем – это сравнение с переменной базой.
Для представления модели динамического ряда используется аналитическое выравнивание ряда динамики. Закономерно изменяющийся уровень изучаемого показателя оценивается как функция времени. В табл. 10.1 приводятся различные виды трендовых моделей, наиболее часто используемые для аналитического выравнивания.
Выбор формы кривой определяет результаты экстраполяции тренда. Одним из наиболее распространенных приемов сглаживания уровней первоначального ряда динамики – это метод скользящей средней.
Выполнить прогноз по уравнению тренда можно путем экстраполяции тенденции, наблюдавшейся в прошлом. Уровень динамического ряда (ŷ), полученный в результате экстраполяции, используется для определения прогнозного значения на будущее.
Наличие зависимости между последующими и предшествующими уровнями динамического ряда называют автокорреляцией, а построение модели зависимости будущих значений рассматриваемого показателя от прошлых его значений называется авторегрессией.
Таблица 10.1
Виды трендовых моделей
Название функции |
Описание функции |
Линейная |
Ŷt = b0 + b1 t |
Парабола второго порядка |
Ŷt = b0 + b1 t + b2 t2 |
Кубическая парабола |
Ŷt = b0 + b1 t + b2 t2 + b3 t3 |
Показательная |
Ŷt = b0 ∙ b1 t |
Экспоненциальная |
Ŷt = b0
∙ e |
Модифицированная экспонента |
Ŷt = b0 + b1 ∙ b2t |
Кривая Гомперца |
Ŷt = b0 ∙ b |
Логистическая кривая |
Ŷt
=
|
Логарифмическая парабола |
Ŷt
=
|
Гиперболическая |
Ŷt = b0 + b1 ∙ (1 / t) |
Ряд исследований проводятся длительное время (мониторинг), чтобы выявить тенденцию или закономерность развития и прогнозирования какого-либо процесса или явления. Для оценки таких событий используют динамические ряды (тренд-анализ). Они представляют собой однородные статистические величины, показывающие изменение явления или процесса во времени. С помощью тренд-анализа описываются характерные тенденции изменения явления во времени, подбираются статистические модели, описывающие эти изменения, производится поиск промежуточных значений путем интерполяции, предсказание результатов значений в перспективе (экстраполяция).
Динамические ряды бывают простые (описание одного явления), сложные (несколько явлений), производные (составленные из средних или относительных величин), моментный (оценка события за определенный момент времени), интервальный (анализ явления за год, полгода, месяц).
Для создания линии тренда по данным диаграммы используется регрессионный анализ, описывающий взаимодействие между переменными. Следует лишь выбрать один из шести способов аппроксимации данных: линейная, логарифмическая, полиномиальная, степенная, экспоненциальная, скользящая средняя.
