Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_mikrobiologia.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
97.23 Кб
Скачать

21. Общая характеристика фотосинтеза. Фототрофные микроорганизмы.

В ходе фотосинтеза создаются органические вещества, необходимые для жизни и самих фотосинтетиков, и гетеротрофных организмов.

Световая энергия в процессе фотосинтеза превращается в доступную для всех организмов энергию химических связей органических веществ, запасаемую в продуктах фотосинтеза (простые углеводы, крахмал и другие полисахариды). В процессе фотосинтеза зеленые растения и цианобактерии выделяют кислород, который используется при дыхании организмов (зеленые и пурпурные бактерии кислород не выделяют). В фотосинтезе участвуют пигменты (зеленые — хлорофилл, желтые — каротиноиды), ферменты и другие соединения, упорядоченно расположены на выростах внутренней мембраны — тилакоидах или в строме хлоропласта. Тилакоиды представляют собой уплощенные замкнутые мембранные мешочки, которые как бы накладываются друг на друга и образуют структуры — граны.

Фазы фотосинтеза.

У растений в процессе фотосинтеза выделяют две последовательные фазы —световую и темновую.

Световая фаза фотосинтеза происходит на свету и только на внутренних мембранах хлоропласта — в тилакоидах, в которые встроены молекулы хлорофилла. В реакциях световой фазы участвуют хлорофилл, вода, ферменты и молекулы-переносчики, встроенные в мембраны. Молекулы хлорофилла поглощают свет, электроны их атомов приходят в возбужденное состояние и перескакивают на орбитали, удаленные от ядра. Вследствие этого связь электронов с ядром ослабевает. Затем электроны подхватываются молекулами-переносчиками и выносятся на наружную сторону мембраны тилакоида.

В это же время под воздействием света происходит фотолиз воды, содержащейся в жидком веществе хлоропластов. Молекулы воды разлагаются на протоны водорода и ионы гидроксила. Последние отдают свои электроны, которые, в свою очередь, восполняют утраченные молекулами хлорофилла электроны. Гидроксильные группы, соединяясь между собой, образуют молекулы воды и молекулярный кислород, который выступает как побочный продукт фотосинтеза. Протоны водорода накапливаются на внутренней стороне мембраны тилакоида. Постепенно по обеим сторонам мембраны между разноименно заряженными электронами и протонами водорода возникает разность потенциалов.

При достижении критического уровня разности потенциалов протоны водорода начинают продвигаться по каналу белка АТФ-синтетазы, встроенного в мембрану тилакоида. Прохождение протонов водорода через канал АТФ-синтетазы сопровождается освобождением энергии, которая запасается в виде синтезируемой АТФ. На наружной стороне мембраны тилакоида протон водорода присоединяет электрон, превращаясь в атомарный водород (Н).

В результате световой фазы синтезируются молекулы АТФ, образуется атомарный водород, выделяется молекулярный кислород. Эффективность световой фазы фотосинтеза велика: в результате фотохимических и фотофизических реакций запасается около 95 % энергии поглощенного света.

Для осуществления темновой фазы свет не является обязательным условием, она протекает без участия света. Процессы темновой фазы происходят в строме хлоропластов, куда от тилакоидов гран поступают молекулы-переносчики, АТФ, а из воздуха — углекислый газ. В строме имеется особое вещество — рибулозобифосфат (РиБФ), присоединяющий к себе углекислый газ с образованием шестиуглеродного промежуточного

вещества. Оно, в свою очередь, распадается на две молекулы фосфоглицериновой

кислоты (ФГК), которая является продуктом фотосинтеза, использующим энергию

образующихся в световой фазе АТФ и атомарный водород. Через цепь химиче-

ских реакций ФГК превращается частично вновь в РиБФ, частично — в глюкозу

Суммарное уравнение фотосинтеза выглядит следующим образом:

6 СО2+ 6Н2О →С6Н12О6 + O2

Еще в середине прошлого века стали известны бактерии, имеющие в массе красный или зеленый цвет. Соответственно такой окраске они получили названия «пурпурные бактерии» и «зеленые бактерии». Дальнейшие исследования показали, что эти микроорганизмы содержат пигменты, похожие на хлорофиллы растений. Кроме того, было отмечено, что рост их зависит от наличия света или стимулируется в его присутствии. Поэтому неоднократно высказывалось предположение о способности пурпурных и зеленых бактерий к фотосинтезу. Окончательно это доказал Ван-Ниль, основная работа которого была опубликована в 1931 г. С этого момента начинается новый этап в изучении пурпурных и зеленых бактерий. Открытие бактериального фотосинтеза имело также большое значение для понимания сущности этого процесса у растений, поскольку наряду с некоторыми особенностями он характеризуется общими закономерностями.

В настоящее время фототрофные бактерии широко используют для исследования фотосинтеза в различных аспектах, особенно начальных стадий, поскольку они удобны для изучения этого сложного вопроса. Кроме того, пурпурные и зеленые бактерии интересны для выяснения организации фотосинтезирующего аппарата, путей биосинтеза пигментов, метаболизма углерода, эволюции фотосинтеза и фотосинте-зирующих форм. Привлекают они к себе внимание и в связи с другими биологическими проблемами, в частности фиксацией молекулярного азота, а также круговоротом углерода и серы в природе. Сделаны первые шаги для практического использования фототрофных бактерий при очистке сточных вод и для получения дешевого корма.

Фототрофные, или фотосинтезирующие, бактерии — типично водные микроорганизмы, распространенные в пресных и соленых водоемах. Особенно часто они встречаются в местах, где есть сероводород, как в мелководье, так и на значительной глубине. В почве фототрофных бактерий мало, но при затоплении ее водой они могут расти весьма интенсивно. Развитие фототрофных бактерий нередко легко обнаружить, не прибегая к постановке накопительных культур и микроскопическим исследованиям, так как многие из них способны образовывать ярко окрашенные пленки, а также обрастать подводные предметы. Такие макроскопические скопления наблюдаются в серных источниках, лиманах, бухтах, озерах и прудах. Иногда в результате массового развития фототрофных бактерий меняется даже цвет всей воды в водоеме или отдельные ее слои становятся окрашенными. Последнее явление довольно часто имеет место в некоторых озерах, содержащих в придонных слоях сероводород.

По всем данным пурпурные и зеленые бактерии — наиболее древние фотосинтезирующие организмы, существующие в настоящее время. Из других фототрофов к ним близки по организации сине-зеленые водоросли, которые в последнее время часто называют сине-зелеными бактериями или цианобактериями, поскольку они относятся к прокариотам. Предлагается даже ввести следующие названия: Rhodobacteria (пурпурные бактерии), СЫого-bacteria (зеленые бактерии) и Cyanobacteria (сине-зеленые бактерии). Однако только пурпурные и зеленые бактерии осуществляют фотосинтез без выделения кислорода. Кроме того, они отличаются от остальных фотосинтезирующих форм, в том числе и от сине-зеленых водорослей, составом хлорофиллов и других пигментов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]