
- •Раздел 1
- •Глава 1
- •1.1. Основные понятия, определения автоматики и автоматизации производственных процессов
- •1.2. Классификация элементов автоматики
- •7. Теорема о конечном значении оригинала y{t)
- •1.5. Передаточные функции элементов и систем автоматики
- •1.6. Частотные передаточные функции и частотные характеристики
- •1.7. Динамические и частотные характеристики элементов
- •Глава 2
- •2.1. Датчики для измерения размеров и перемещения
- •2.2. Датчики дефектоскопии древесины
- •2.3. Датчики измерения скорости, ускорения
- •2.4. Датчики для измерения силы, давления, веса
- •2.5. Датчики давления
- •2.6. Датчики температуры
- •Глава 3 усилительные элементы
- •3.2. Ламповые электронные усилители
- •3.3. Полупроводниковые усилители
- •3.5. Магнитные усилители
- •3.6. Реле как усилитель
- •3.7. Релейные усилители серии «логика-и»
- •3.8. Гидравлические и пневматические усилители
- •Глава 4 исполнительные механизмы
- •4.1. Электромагниты
- •4.2. Электродвигатели как исполнительные механизмы автоматических систем
- •4.3. Шаговые двигатели и электромагнитные муфты
- •4.5. Пневматические, гидравлические
- •4.6. Гидравлические исполнительные механизмы
- •Глава 5
- •5.2. Электронные переключающие устройства
- •5.3. Электротепловые переключающие устройства
- •5.4. Гидравлические переключающие устройства
- •5.5. Реле времени как переключающее устройство
- •5.6. Программные устройства, командоаπ параты
- •Глава 6 элементы и узлы цифровой автоматики
- •6.2. Комбинационные схемы и цифровые автоматы
- •6.4. Система синхронизации цифровых устройств
- •6.5. Триггеры
- •6.6 Регистры, шифраторы, дешифраторы
- •6.8. Арифметическо-логическое устройство (алу)
- •6.10. Цифроаналоговые преобразователи (цап). Аналого-цифровые преобразователи (ацп)
- •Глава 7 микропроцессоры и микроэвм
- •7.1. Общие понятия
- •7.2. Классификация и характеристики микропроцессоров
- •7.3. Структуры микропроцессоров
- •7.4. Интерфейс микропроцессорных систем
- •7.6. Современные микроэвм
- •7.7. Программирование микропроцессорных систем
- •Раздел I I
- •Глава 8 объекты регулирования и управления
- •8.1. Объекты автоматического регулирования технологических параметров
- •8.2. Экспериментальные методы определения характеристик объектов регулирования
- •8.4. Автоматическая идентификация моделей объектов управления
- •Глава 9
- •9.1. Основные понятия
- •9.2. Законы регулирования и типы регуляторов непрерывного действия
- •9.3. Анализ качества аср
- •9.4. Устойчивость аср
- •9.5. Основные показатели качества аср
- •9.6. Синтез аср
- •9.7. Компенсация возмущающих воздействий при синтезе аср
- •9.8. Следящие системы регулирования
- •Глава 10
- •10.1. Общие сведения
- •10.2. Включающие и выключающие элементы
- •10.3. Основные логические операции и их связки
- •10.5. Логические функции
- •10.6. Логические элементы
- •10.7. Реализация логических функций
- •10.8. Реализация математико-логических операций на элементах и-108
- •10.9. Реализация математико-логических операций на базовых элементах и-103
- •10.10. Основные функциональные схемы на логических элементах
9.7. Компенсация возмущающих воздействий при синтезе аср
В целом ряде АСР (пневмотранспорта щепы, процессов пиления и др.) объекты регулирования подвержены резким и сильным возмущающим воздействиям, которые вызывают длительные переходные процессы с большим динамическим забросом регулируемой величины. Поэтому рассмотренные выше АСР по отклонению x=g—у в этих случаях не будут достаточно эффективными. Вернемся к рис. 9.3, а АСР скорости воз-
Рис. 9.8. Структурная схема АСР инвариантной к возмущающим воздействиям
душного потока пневмотранспорта технологической щепы. При загрузке щепы в трубопровод через питатель происходит проскок воздуха по случайным причинам. А это вызывает пульсации давления, скорости потока за питателем, что обусловливает резкий рост числа соударений частиц с большими ускорениями и возникновение недопустимого измельчения некоторой части транспортируемой щепы. В связи с этим представляется необходимым устранить неблагоприятное влияние пульсаций давления f(t) за питателем на стабилизацию расхода воздуха (скорости пневмотранспортного потока) и преобразовать АСР по отклонению χ в систему комбинированного управления по отклонению x(t) и по возмущающему воздействию f(t), (рис. 9.8).
Блок компенсации возмущающего воздействия с передаточной функцией φ(Р) включает в себя измеритель возмущающего воздействия и преобразовательное устройство. На рис. 9.3, а цепь компенсации пульсаций давления показана пунктиром; пульсации давления измерялись манометром, а блок компенсации состоял из пневматических приборов системы СТАРТ. Задача синтеза АСР, инвариантных к возмущающему воздействию, которое компенсируется полностью или частично, заключается в определении передаточной функции блока коррекции φ (Р) и технической реализации его в цепи компенсации возмущающего воздействия. Структурная схема на рис. 9.8 дает следующие соотношения: Wf(Ρ)об=Υ(Ρ)/F(Ρ) — передаточная
функция объекта регулирования по каналу возмущающего воздействия F (P):→f (t); W (P)об = Y (P)/XР(Ρ) -передаточная функция объекта по каналу регулирования; W(Р)рег — Хр(Р)/ Х(Р)— передаточная функция регулятора. Все это позволяет получить зависимости
Y (Р) = Wf (P)обF (Ρ) + W (Р)обХр (Ρ); X(P) = Q (P)-Y (Ρ); Χp (Ρ) = W (Р)рег [Χ (Ρ)-φ (Ρ) F (Ρ)].
Исключая промежуточные переменные X (Ρ) и ХР(Р), получим
Y (Ρ) = Wf (P)обF (Ρ) + W (Р)обW (Р)рег {[Q (P)-Y (Ρ)]-φ (Ρ) F(P)})
или
(9.1)
где W(P)раз = W(P)об W(P)рег. Знаменатель передаточных функций составляющих регулирования по отклонению и возмущению одинаков, т. е. комбинированная система не ухудшает условий устойчивости исходной системы, сохраняются все оценки обеих систем на использовании корней характеристического уравнения 1 + W(P)раз = 0.
Из уравнения (9.16) нетрудно видеть условие абсолютной инвариантности (независимости) расхода и скорости воздуха за питателем от неравномерности загрузки щепы, от проскока воздуха через питатель, т. е. Wf(P)об— W(P)разφ(P) =0. Это условие определяет искомую передаточную функцию блока коррекции:
φ(Ρ) = Wf(P)об/W(P)раз. (9.17)
Деление Wf (Ρ) об на W(Р)раз дает выражение
φ(Ρ)=k(a0 + τ1Ρ + τ2Ρ2 + τ3Ρ3+ . . . ). (9.18)
Для рассматриваемого примера k — коэффициент усиления безынерционного манометра измерения пульсаций давления; а0 — коэффициент (а0=1 или а0 = 0); τ1, τ2, ... — необходимые постоянные времени при дифференцирующих устройствах блока коррекции φ(Ρ); Ρ = d/dt. Практическая реализация
блока коррекции даже с одним дифференцирующим устройством (рис. 9.8, б) устраняет пульсации давления воздуха за питателем, т. е. устраняется неблагоприятное дополнительное измельчение щепы при пневмотранспортировании. В системах регулируемого электропривода подачи лесопильных станков возмущающие воздействия от изменения нагрузки на главный
двигатель пилы измеряются трансформаторами тока, а дифференцирующие устройства блоков коррекции строятся на цепочках RC.