
- •Раздел 1
- •Глава 1
- •1.1. Основные понятия, определения автоматики и автоматизации производственных процессов
- •1.2. Классификация элементов автоматики
- •7. Теорема о конечном значении оригинала y{t)
- •1.5. Передаточные функции элементов и систем автоматики
- •1.6. Частотные передаточные функции и частотные характеристики
- •1.7. Динамические и частотные характеристики элементов
- •Глава 2
- •2.1. Датчики для измерения размеров и перемещения
- •2.2. Датчики дефектоскопии древесины
- •2.3. Датчики измерения скорости, ускорения
- •2.4. Датчики для измерения силы, давления, веса
- •2.5. Датчики давления
- •2.6. Датчики температуры
- •Глава 3 усилительные элементы
- •3.2. Ламповые электронные усилители
- •3.3. Полупроводниковые усилители
- •3.5. Магнитные усилители
- •3.6. Реле как усилитель
- •3.7. Релейные усилители серии «логика-и»
- •3.8. Гидравлические и пневматические усилители
- •Глава 4 исполнительные механизмы
- •4.1. Электромагниты
- •4.2. Электродвигатели как исполнительные механизмы автоматических систем
- •4.3. Шаговые двигатели и электромагнитные муфты
- •4.5. Пневматические, гидравлические
- •4.6. Гидравлические исполнительные механизмы
- •Глава 5
- •5.2. Электронные переключающие устройства
- •5.3. Электротепловые переключающие устройства
- •5.4. Гидравлические переключающие устройства
- •5.5. Реле времени как переключающее устройство
- •5.6. Программные устройства, командоаπ параты
- •Глава 6 элементы и узлы цифровой автоматики
- •6.2. Комбинационные схемы и цифровые автоматы
- •6.4. Система синхронизации цифровых устройств
- •6.5. Триггеры
- •6.6 Регистры, шифраторы, дешифраторы
- •6.8. Арифметическо-логическое устройство (алу)
- •6.10. Цифроаналоговые преобразователи (цап). Аналого-цифровые преобразователи (ацп)
- •Глава 7 микропроцессоры и микроэвм
- •7.1. Общие понятия
- •7.2. Классификация и характеристики микропроцессоров
- •7.3. Структуры микропроцессоров
- •7.4. Интерфейс микропроцессорных систем
- •7.6. Современные микроэвм
- •7.7. Программирование микропроцессорных систем
- •Раздел I I
- •Глава 8 объекты регулирования и управления
- •8.1. Объекты автоматического регулирования технологических параметров
- •8.2. Экспериментальные методы определения характеристик объектов регулирования
- •8.4. Автоматическая идентификация моделей объектов управления
- •Глава 9
- •9.1. Основные понятия
- •9.2. Законы регулирования и типы регуляторов непрерывного действия
- •9.3. Анализ качества аср
- •9.4. Устойчивость аср
- •9.5. Основные показатели качества аср
- •9.6. Синтез аср
- •9.7. Компенсация возмущающих воздействий при синтезе аср
- •9.8. Следящие системы регулирования
- •Глава 10
- •10.1. Общие сведения
- •10.2. Включающие и выключающие элементы
- •10.3. Основные логические операции и их связки
- •10.5. Логические функции
- •10.6. Логические элементы
- •10.7. Реализация логических функций
- •10.8. Реализация математико-логических операций на элементах и-108
- •10.9. Реализация математико-логических операций на базовых элементах и-103
- •10.10. Основные функциональные схемы на логических элементах
Глава 7 микропроцессоры и микроэвм
7.1. Общие понятия
Микропроцессор (МП)—программно-управляемое устройство для обработки цифровой информации и управления процессом этой обработки, выполненное в виде одной (или нескольких) интегральной схемы с высокой степенью интеграции электронных элементов.
Для повышения производительности процессора ЭВМ вместо однокристальных микропроцессоров используются многокристальные, а также секционные многокристальные микропроцессоры.
В многокристальном МП производится разделение логической схемы процессора на отдельные функциональные законченные части, каждая из которых реализуется в виде интегральной схемы.
Для выполнения сложных функций управления созданы микроконтроллеры — управляющие устройства, выполненные на одном или нескольких кристаллах. Микроконтроллеры выполняют функции логического анализа и управления, поэтому за счет исключения арифметических операций уменьшена их аппаратурная сложность и развиты функции логического управления.
Созданы аналоговые МП для прямой обработки аналоговых и цифровых сигналов; в их структуре имеется несколько каналов аналого-цифровых и цифроаналоговых преобразователей, а также цифровой процессор. Они повышают точность обработки аналоговых сигналов, имеют широкие возможности программной настройки цифровой части микропроцессора на различные алгоритмы обработки аналоговых сигналов.
Использование БИС микропроцессора вместе с БИС полупроводниковой памяти, БИС управления вводом-выводом позволило получить принципиально новую систему обработки данных и управления в виде микроЭВМ, получить высокую производительность, надежность, низкую стоимость, малые мощность потребления энергии и габарит, большую устойчивость к неблагоприятным климатическим и механическим воздействиям.
Архитектура микропроцессора — функциональные возможности аппаратурных электронных средств, используемых для представления данных, машинных операций описания алгоритмов и процессов вычислений.
Архитектура МП позволяет четко выделить то, что должно быть реализовано пользователем программным способом и дополнительными аппаратурными средствами, в частности числа и имена программно-доступных регистров, разрядность машинного слова, систему команд, доступный размер и адреса оперативной памяти, быстродействие процессора, схему обработки прерываний, способы адресации оперативной памяти и внешних устройств.
Создание сверхбольших интегральных схем (СБИС) дало возможность получить универсальные вычислительные модули, разместить на одном кристалле центральный процессор и оперативную память достаточно большого объема, что позволяет реализовать прямое восприятие языков программирования высокого уровня.
7.2. Классификация и характеристики микропроцессоров
Для МП важны такие качества и параметры: тип корпуса, количество источников питания, требования к синхронизации, мощность рассеяния, температурный диапазон, разрядность и возможность ее расширения, цикл выполнения команд (микрокоманд) , уровни сигналов, помехоустойчивость, нагрузочная спо¬ собность, надежность, долговечность и т. д.
В МП встраиваются аппаратурные средства реализации многих сотен команд, что обеспечивает компактную запись алгоритмов и эффективные программы.
Однокристальные МП получаются при реализации всех аппаратурных средств процессора в виде одной БИС и СБИС, однако их возможности ограничены аппаратурными ресурсами кристалла и корпуса, поэтому более распространены многокристальные МП, а также многокристальные секционные МП.
В многокристальном МП проводится разбиение его логической структуры на функционально законченные части с реализацией их в БИС (СБИС).
Трехкристальные МП имеют разрядность до 32 бит и параметры, сравнимые с параметрами старших моделей рядов мини-ЭВМ и средних ЭВМ.
МП бывают универсальные и специализированные. Универсальные МП применяются для широкого круга задач. Среди специализированных МП выделяются различные микроконтроллеры для выполнения сложной последовательности логических операций; математические МП для повышения производительности выполнения арифметических операций за счет, например, матричных методов; МП для обработки данных и т. д. В универсальных МП в системе команд заложена алгоритмическая универсальность.
Сами МП — цифровые устройства, однако они могут иметь встроенные аналого-цифровые и цифроаналоговые преобразователи. Синхронные МП — микропроцессоры, в которых начало и конец выполнения операций задаются устройством управления. Асинхронные МП позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции.
По структуре микропроцессорных систем различают:
одномагистральные микроЭВМ, где все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов;
многомагистральные микроЭВМ, у которых устройства группами подключаются к своей информационной магистрали, что обеспечивает одновременную передачу информационных сигна-
лов по нескольким (или всем) магистралям и увеличивает производительность.
В однопрограммных МП выполняется только одна программа, переход к выполнению другой программы происходит после завершения текущей программы. В много- или мультипрограммных МП одновременно выполняется несколько программ (обычно несколько десятков), что позволяет осуществить
Таблица 7.1
Наименование НС-интегральных схем |
Обозначение |
Разрядность |
Тактовая частота, МГц |
Напряжение, В |
Серия КР588 |
||||
Ар ифметическо-логическое устройство |
КР588ВС2 |
16 |
1,0 |
5,0 |
Управляющая память Системный контроллер Многорежимный буферный регистр |
КР588ВУ2 КР588ВГ1 КР588ИР1 |
8 |
1,2 1,0 |
5,0 5,0 5,0 |
Магистральный приемопередатчик |
КР588ВА1 |
8 |
— |
5,0 |
Серия К1801 |
||||
Однокристальные микро-ЭВМ |
К1801ВЕ1 |
16 |
8,0 |
5,0 |
Однокристальный микропроцессор БИС матрицы вентилей |
К1801ВМ1 К1801ВП1 |
16 |
5,0 |
5,0 5,0 |
контроль за состоянием и управлением большим числом источников или приемников информации.
В табл. 7.1 в качестве примера указаны 2 типа микропроцессорных комплектов.
Микропроцессорные комплекты серии КР588 обладают низким потреблением энергии, имеют БИС управляющей памяти (УП) с емкостью программируемой логической матрицы (ПЛМ) в 150 логических произведений. Имеются БИС УП с закодированными в них микропрограммами для реализации системы команд микроЭВМ «Электроника-60», системы ЧПУ на базе «Электроника НЦ-31» и др.
МП комплекты серии К1801 созданы на основе СБИС однокристального микропроцессора с системой команд микроЭВМ «Электроника-60» и матричной БИС для построения разнообразных схем управления. В составе комплекта имеется СБИС однокристальной микроЭВМ с емкостью ОЗУ 128 и ПЗУ 1024 16 разрядных слов. На основе матричной БИС построены контроллеры управления ОЗУ емкостью 32К 16-разрядных слов, радиального последовательного интерфейса. В состав комплекта входит БИС ПЗУ емкостью 4К 16-разрядных слов. МПК серии
1801 является однокристальным и обладает весьма высокой степенью интеграции и высоким быстродействием (до 500000 операций/с). Комплект перспективный для применения в автоматизации, так как его интерфейс и система команд позволяют использовать программное обеспечение СМ ЭВМ «Электро-ника-79», «Электроника-100/25», «Электроника-60» и др.
Отметим наиболее характерные узлы микропроцессора [3], составляющие основу их структуры.
Центральным блоком МП является арифметико-логическое устройство (АЛУ), которое обычно включает в себя сумматор, сдвиговые регистры, схемы ускоренного переноса, регистры. В АЛУ аппаратно выполняется около десяти простейших операций.
Регистры общего назначения (ΡΟΗ) образуют сверхоперативную память для хранения подлежащих обработке данных результатов и команд. Число ΡΟΗ в МП до нескольких десятков.
Для расширения возможностей АЛУ в МП имеется несколько специальных регистров, таких, как аккумулятор, программный счетчик (счетчик команд), указатель стека (УС), регистр команд, регистр состояния (признаков), буферные регистры и т. д. Аккумулятор позволяет сократить время выполнения некоторых операций и уменьшить длину некоторых команд. Стек служит для упрощения системы прерываний, ускорения реакции на прерывания, что важно в системах управления технологиями. Программный счетчик (ПС) содержит адрес очередной команды, подлежащей выполнению. Регистр команд (РК) хранит код выполняемой в данный момент команды. Регистр признаков (РП) предназначен для хранения признаков результата выполняемой операции в АЛУ (нулевого или отрицательного результата, переноса, переполнения).
Пересылки информации между регистрами МП и АЛУ осуществляются по внутренним шинам. С памятью и устройствами ввода-вывода МП взаимодействует при помощи адресной, информационной и управляющей шин. Часто информационные и адресные шины объединяют в единую общую шину, производительность МП при этом снижается.