- •Действие антикоагулянтов [править]
- •Применение антикоагулянтов [править]
- •10.Особенности биологического окисления, его виды.
- •Гликолиз и глюконеогенез дополняют друг друга
- •Регуляция глюконеогенеза
- •Гормональные и метаболические факторы, регулирующие гликолиз и глюконеогенез Регуляция гликолиза
- •Регуляция глюконеогенеза
- •Гормональные и метаболические факторы, регулирующие гликолиз и глюконеогенез Регуляция гликолиза
- •Желчные кислоты человека
- •№45. Изменения активности ферментов в плазме крови
- •Эндокринная сигнализация
- •Синаптическая передача
- •Паракринная сигнализация. Простогландины (пг)
- •№112. Нейрогормоны - биологически активные вещества, вырабатываемые нейросекреторными клетками. Нейрогормоны регулируют деятельность внутренних органов и центральной нервной системы.
- •Маточный цикл
- •Работа атф-синтазы
- •№156. Классификация ферментов
- •Амфотерность[править]
- •Растворимость[править]
- •Денатурация[править]
- •Гормоны аденогипофиза
10.Особенности биологического окисления, его виды.
Биологическое окисление – дегидрирование субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора. Если в роли конечного акцептора выступает кислород, процесс называют аэробным окислением, или тканевым дыханием, если конечный акцептор представлен не кислородом – анаэробным окислением. Для биологического окисления необходимо система переноса протонов и электронов и система доставки в ткани кислорода. Основной источник энергии в клетке – окисление субстратов кислородом воздуха.
БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ - это совокупность окислительных процессов в живом организме, протекающих с обязательным участием кислорода. Синоним - ТКАНЕВОЕ ДЫХАНИЕ. Окисление одного вещества невозможно без восстановления другого вещества. Окислительно-восстановительных процессов в живой природе очень много. Часть окислительно-восстановительных процессов, протекающих с участием кислорода, относится к биологическому окислению.
Биоэнергетические процессы, приводящие к синтезу АТФ, к зарядке «биологических аккумуляторов», протекают в специали зированных мембранах митохондрий. Именно здесь локализо ваны и пространственно организованы молекулярные системы, ответственные за энергетику живых организмов. Синтез АТФ в митохондриях сопряжен с электронным и ионным транспортом и с механохимическими явлениями. Функции митохондриальных мембран весьма сложны и многообразны. Другой тип биоэнерге тических сопрягающих мембран — мембраны хлоропластов рас тений, ответственные за фотосинтез, — рассматривается в гл.7.
Источником энергии, расходуемой клеткой на биосинтез, активный транспорт, механическую и электрическую работу, является дыхание, т. е. окисление органических соединений кисло родом воздуха. В 1780 г. Лавуазье показал, что дыхание и горе ние имеют единую природу. За последующие почти два столетия исследования химиков, биологов и физиков привели к раскры тию основных особенностей биологического окисления — одного из важнейших процессов (или, скорее, системы процессов), про исходящих в живой природе.
13. Биотин (витамин Н)
В основе строения биотина лежит тиофено-вое кольцо, к которому присоединена молекула мочевины, а боковая цепь представлена валерьяновой кислотой.
Источники. Биотин содержится почти во всех продуктах животного и растительного происхождения. Наиболее богаты этим витамином печень, почки, молоко, желток яйца. В обычных условиях человек получает достаточное количество биотина в результате бактериального синтеза в кишечнике.
Суточная потребность биотина у человека не превышает 10 мкг.
Биологическая роль. Биотин выполняет коферментную функцию в составе карбоксилаз: он участвует в образовании активной формы СО2.
В организме биотин используется в образовании малонил-КоА из ацетил-КоА (см. раздел 8), в синтезе пуринового кольца (см. раздел 10), а также в реакции карбоксили-рования пирувата с образованием оксало-ацетата (см. раздел 6). Клинические проявления недостаточности биотина у человека изучены мало, поскольку бактерии кишечника обладают способностью синтезировать этот витамин в необходимых количествах. Поэтому картина авитаминоза проявляется при дисбактериозах кишечника, например, после приёма больших количеств антибиотиков или сульфамидных препаратов, вызывающих гибель микрофлоры кишечника, либо после введения в рацион большого количества сырого яичного белка. В яичном белке содержится гликопротеин авидин, который соединяется с биотином и препятствует всасыванию последнего из кишечника. Авидин (молекулярная масса 70 000 кД) состоит из четырёх идентичных субъединиц, содержащих по 128 аминокислот; каждая субъединица связывает по одной молекуле биотина.
При недостаточности биотина у человека развиваются явления специфического дерматита, характеризующегося покраснением и шелушением кожи, а также обильной секрецией сальных желёз (себорея). При авитаминозе витамина Н наблюдают также выпадение волос и шерсти у животных, поражение ногтей, часто отмечают,боли в мышцах, усталость, сонливость и депрессию.
20. Витамин В2 (рибофлавин). В основе структуры витамина В2 лежит структура изоаллоксазина, соединённого со спиртом рибитолом.
Рибофлавин представляет собой кристаллы жёлтого цвета (от лат. flavos - жёлтый), слабо растворимые в воде.
Главные источники витамина В2 - печень, почки, яйца, молоко, дрожжи. Витамин содержится также в шпинате, пшенице, ржи. Частично человек получает витамин В2 как продукт жизнедеятельности кишечной микрофлоры.
Суточная потребность в витамине В2 взрослого человека составляет 1,8-2,6 мг.
Биологические функции. В слизистой оболочке кишечника после всасывания витамина происходит образование коферментов FMN и FAD по схеме:
Коферменты FAD и FMN входят в состав флавиновых ферментов, принимающих участие в окислительно-восстановительных реакциях (см. разделы 2, 6, 9, 10).
Клинические проявления недостаточности рибофлавина выражаются в остановке роста у молодых организмов. Часто развиваются воспалительные процессы на слизистой оболочке ротовой полости, появляются длительно незаживающие трещины в углах рта, дерматит носогубной складки. Типично воспаление глаз: конъюнктивиты, васкуляризация роговицы, катаракта. Кроме того, при авитаминозе В2 развиваются общая мышечная слабость и слабость сердечной мышцы.
3. Витамин РР (никотиновая кислота, никотинамид, витамин B3)
Источники. Витамин РР широко распространён в растительных продуктах, высоко его содержание в рисовых и пшеничных отрубях, дрожжах, много витамина в печени и почках крупного рогатого скота и свиней. Витамин РР может образовываться из триптофана (из 60 молекул триптофана может образоваться 1 молекула никотинамида), что снижает потребность в витамине РР при увеличении количества триптофана в пище.
Суточная потребность в этом витамине доставляет для взрослых 15-25 мг, для детей - 15 мг.
Биологические
функции. Никотиновая кислота в организме
входит в состав NAD и NADP, выполняющих
функции коферментов различных дегидрогеназ
(см. раздел 2). Синтез NAD в организме
протекает в 2 этапа:
NADP образуется из NAD путём фосфорилирования под действием цитоплазматической NAD-киназы.
NAD+ + АТФ → NADP+ + АДФ
Недостаточность витамина РР приводит к заболеванию "пеллагра", для которого характерны 3 основных признака: дерматит, диарея, деменция ("три Д"), Пеллагра проявляется в виде симметричного дерматита на участках кожи, доступных действию солнечных лучей, расстройств ЖКТ (диарея) и воспалительных поражений слизистых оболочек рта и языка. В далеко зашедших случаях пеллагры наблюдают расстройства ЦНС (деменция): потеря памяти, галлюцинации и бред.
4. Пантотеновая кислота (витамин B5)
Пантотеновая кислота состоит из остатков D-2,4-дигидрокси-3,3-диметилмасляной кислоты и β-аланина, соединённых между собой амидной связью:
Пантотеновая кислота - белый мелкокристаллический порошок, хорошо растворимый в воде. Она синтезируется растениями и микроорганизмами, содержится во многих продуктах животного и растительного происхождения (яйцо, печень, мясо, рыба, молоко, дрожжи, картофель, морковь, пшеница, яблоки). В кишечнике человека пантотеновая кислота в небольших количествах продуцируется кишечной палочкой. Пантотеновая кислота - универсальный витамин, в ней или её производных нуждаются человек, животные, растения и микроорганизмы.
Суточная потребность человека в пантотеновой кислоте составляет 10-12 мг.
Биологические функции. Пантотеновая кислота используется в клетках для синтеза кофермен-тов: 4-фосфопантотеина и КоА (рис. 3-1). 4-фосфопантотеин - коферменг пальмитоилсинтазы. КоА участвует в переносе ацильных радикалов в реакциях общего пути катаболизма (см. раздел 6), активации жирных кислот, синтеза холестерина и кетоновьж тел (см. раздел 8), синтеза ацетилглюкозаминов (см. раздел 15), обезвреживания чужеродных веществ в печени (см. раздел 12).
Клинические проявления недостаточности витамина. У человека и животных развиваются дерматиты, дистрофические изменения желёз внутренней секреции (например, надпочечников), нарушение деятельности нервной системы (невриты, параличи), дистрофические изменения в сердце, почках, депигментация и выпадение волос и шерсти у животных" потеря аппетита, истощение. Низкий уровень пантотената в крови у людей часто сочетается с другими гиповитаминозами (В.,, В2) и проявляется как комбинированная форма гиповитаминоза.
22. Важнейшие фосфолипиды, биосинтез, биологическая роль. Сурфактант.
К этому классу сложных липидов относится глицерофосфолипиды и сфинголипиды. Глицерофосфолипиды явялются производными фосфатидной кислоты: в их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения. Характерно, что одна часть их молекулы обнаруживает резко выраженную гидрофобность, тогда как другая часть гидрофильна благодаря отрицательному заряду остатка фосфорной кислоты и положительному заряду одного из радикалов. Существует несколько подклассов: фосфатидилхолины, фосфотидилэтаноламины, фосфатидиламины, фосфатидилсерины и др. Сфингомиелины являются наиболее распространёнными сфинголипидами. Находятся в мембране животных и растительных клеток. Особенна, богата ими нервная ткань, обнаружены в почках, печени и других органов. При гидролизе они образуют одну молекулу жирной кислоты, одну молекулу ненасыщенного аминоспирта сфингозина, одну молекулу азотистого основания. Синтез локализован главным образом в эндоплазматичеческой сети клетки. Сначала фосфатидная кислота в результате обратимой реакции с цитидинтрифосфатом (ЦТФ) превращается в цитидинфосфат-диглицерида (ЦДФ-диглицерид). Затем в последующих реакциях, каждая из которых катализируется соответствующим ферментом, цитидинмонофосфат вытесняется из молекулы ЦДФ-диглицеида одним из двух соединений – серином или инозитом, образуя фосфатидилсерин или фосфатидилинозит, или 3-фосфатидил-глицерол-1-фосфат. В свою очередь фосфатидилсерин может декарбоксилироваться с образованием фосфатидилэтаноламина, который является предшественником фосфатидилхолина. В результате последовательного переноса трех метильных групп от трёх молекул S-аденозилметионина к аминогруппе остатка этаноламина образуется фосфатидилхолин. Существует ещё один путь синтеза фосфатидилэтаноламина и фосфатидилхолина в клетках животных. В этом пути также используется ЦТФ в качестве переносчика, но не фосфатидной кислоты, а фосфорилхолина или фосфорилэтаноламина.
24. Ретино́л (истинный витамин A, транс-9,13-Диметил-7-(1,1,5-триметилциклогексен-5-ил-6)-нонатетраен-7,9,11,13-ол) — жирорастворимый витамин, антиоксидант. В чистом виде нестабилен, встречается как в растительных продуктах, так и в животных источниках. Поэтому производится и используется в виде ретинола ацетата и ретинола пальмитата. В организме синтезируется из бета-каротина. Необходим для зрения и роста костей, здоровья кожи и волос, нормальной работы иммунной системы и т.д
В высоких дозах оказывает тератогенное действие (способен вызывать врожденные дефекты развития плода). Тератогенное действие высоких доз ретинола сохраняется и некоторое время после его отмены.
Специфично для авитаминоза А поражение глазного яблока ксерофтальмия, т.е. развитие сухости роговой оболочки глаза как следствие закупорки слёзного канала в связи с ороговением эпителия. Это свою очередь приводит к развитию конъюктивита, отёку изъязвлению и размягчению роговой оболочки( к кератомаляции)
Лучшие источники витамина А — рыбий жир и печень, следующими в ряду стоят сливочное масло, яичный желток, сливки и цельное молоко. Зерновые продукты и снятое молоко, даже с добавками витамина, являются неудовлетворительными источниками, равно как и говядина, где витамин А содержится в ничтожных количествах.
Ретиноевая кислота
№24.
Тиамин |
|
|
|
Общие |
|
Систематическое наименование |
3-[(4-амино-2-метил-5-пиримидил) метил]-5-(2-гидроксиэтил)-4-метил-тиазол |
Эмпирическая формула |
C12H17N4OS |
Известный как витамин B1 тиамин играет важную роль в процессах метаболизма углеводов и жиров. Вещество необходимо для нормального протекания процессов роста и развития и помогает поддерживать надлежащую работу сердца, нервной и пищеварительной систем. Тиамин, являясь водорастворимым соединением, не запасается в организме и не обладает токсическими свойствами.
Тиаминпирофосфат
(ТПФ)
Тиаминпирофосфат (ТПФ) — активная форма тиамина — является коферментом пируватдекарбоксилазного и α-кетоглутаратдекарбоксилазного комплексов, а также транскетолазы
Тиамин широко распространен в продуктах растительного происхождения (оболочка семян хлебных злаков и риса горох, фасоль и соя).
В организмах животных витамин В1, содержится преимущественно в виде дифосфорного эфира тиамина (ТДФ); он образуется в печени, почках, мозге, сердечной мышце путём фосфорилирования тиамина при участии тиаминкиназы иАТФ.
Основной, наиболее характерный и специфический признак недостаточности витамина В1 - полиневрит, в основе которого лежат дегенеративные изменения нервов. Вначале развивается болезненность вдоль нервных стволов, затем - потеря кожной чувствительности и наступает паралич (бери-бери). Второй важнейший признак заболевания - нарушение сердечной деятельности, что выражается в нарушении сердечного ритма, увеличении размеров сердца и в появлении болей в области сердца. К характерным признакам заболевания, связанного с недостаточностью витамина В1 относят также нарушения секреторной и моторной функций ЖКТ; наблюдают снижение кислотности желудочного сока, потерю аппетита, атонию кишечника.
26. Витамин B6 — собирательное название производных 3-гидрокси-2-метилпиридинов, обладающих биологической активностьюпиридоксина[1] — собственно пиридоксин, пиридоксаль, пиридоксамин, а также их фосфаты, среди которых наиболее важенпиридоксальфосфат.
Различные формы в организме человека превращаются в пиридоксальфосфат — кофактор ферментов, которые катализируютдекарбоксилирование и трансаминирование аминокислот. Участвует во многих аспектах метаболизма макроэлементов, синтезенейротрансмиттеров (серотонина, дофамина, адреналина, норадреналина, ГАМК), гистамина, синтезе и функции гемоглобина, липидном синтезе, глюконеогенезе, экспрессии генов.
Витамин B6 (пиридоксин, пиридоксаль, пиридоксамин) содержится во многих продуктах. Особенно много его содержится в зерновых ростках, в грецких орехах и фундуке, в шпинате, картофеле и батате, моркови, цветной и белокочанной капусте, помидорах, клубнике, черешне, апельсинах и лимонах, авокадо. Также он содержится в мясных и молочных продуктах, рыбе, яйцах, крупах и бобовых. Витамин B6 (пиридоксин, пиридоксаль, пиридоксамин) синтезируется в организме кишечной микрофлорой.
Источники витамина В6 для человека - такие продукты питания, как яйца, печень, молоко, зеленый перец, морковь, пшеница, дрожжи. Некоторое количество витамина синтезируется кишечной флорой.
Биологические функции. Все формы витамина В6 используются в организме для синтеза кофер-ментов: пиридоксальфосфата и пиридоксаминфосфата. Коферменты образуются путём фос-форилирования по гидроксиметильной группе в пятом положении пиримидинового кольца при участии фермента пиридоксалькиназы и АТФ как источника фосфата.
Пиридоксалевые ферменты играют ключевую роль в обмене аминокислот: катализируют реакции трансаминирования и декарбоксилирования аминокислот, участвуют в специфических реакциях метаболизма отдельных аминокислот: серина, треонина, триптофана, серосодержащих аминокислот, а также в синтезе тема (см. разделы 9, 12).
Клинические проявления недостаточности витамина. Авитаминоз В6 у детей проявляется повышенной возбудимостью ЦНС, периодическими судорогами, что связано, возможно, с недостаточным образованием тормозного медиатора ГАМК (см. раздел 9), специфическими дерматитами. У взрослых признаки гиповитаминоза В6 наблюдают при длительном лечении туберкулёза изониазидом (антагонист витамина В6). При этом возникают поражения нервной системы (полиневриты), дерматиты.
пиридоксин,
пиридоксаль, пиридоксамин
27. Витамины группы D (кальциферолы) Кальциферолы - группа химически родственных соединений, относящихся к производным стеринов. Наиболее биологически активные витамины - D2 и D3. Витамин D2 (эргокалыщферол), производное эргостерина - растительного стероида, встречающегося в некоторых грибах, дрожжах и растительных маслах. При облучении пищевых продуктов УФО из эргостерина получается витамин D2, используемый в лечебных целях. Витамин D3, имеющийся у человека и животных, - холекальциферол, образующийся в коже человека из 7-дегидрохолестерина под действием УФ-лучей (рис. 3-5).
Источники. Наибольшее количество витамина D3 содержится в продуктах животного происхождения: сливочном масле, желтке яиц, рыбьем жире.
Биологическая роль. В организме человека витамин D3 гидроксилируется в положениях 25 и 1 и превращается в биологически активное соединение 1,25-дигидроксихолекальциферол (калыщтриол). Калыщтриол выполняет гормональную функцию, участвуя в регуляции обмена Са2+ и фосфатов, стимулируя всасывание Са2+ в кишечнике и кальцификацию костной ткани, реабсорбцию Са2+и фосфатов в почках. При низкой концентрации Са2+ или высокой концентрации D3 он стимулирует мобилизацию Са2+ из костей (см. раздел 11).
Недостаточность. При недостатке витамина D у детей развивается заболевание "рахит", характеризуемое нарушением кальцификации растущих костей. При этом наблюдают деформацию скелета с характерными изменениями костей (Х- или о-образная форма ног, "чётки" на рёбрах, деформация костей черепа, задержка прорезывания зубов).
Избыток. Поступление в организм избыточного количества витамина D3 может вызвать гипервитаминоз D. Это состояние характеризуется избыточным отложением солей кальция в тканях лёгких, почек, сердца, стенках сосудов, а также остеопорозом с частыми переломами костей.
28. Витамины группы Е (токоферолы)
Источники витамина Е для человека - растительные масла, салат, капуста, семена злаков, сливочное масло, яичный желток.
Биологическая роль. По механизму действия токоферол является биологическим антиоксидантом. Он ингибирует свободнорадикальные реакции в клетках и таким образом препятствует развитию цепных реакций перекисного окисления ненасыщенных жирных кислот в липидах биологических мембран и других молекул, например ДНК (см. раздел 8). Токоферол повышает биологическую активность витамина А, защищая от окисления ненасыщенную боковую цепь.
Клинические проявления недостаточности витамина Е у человека до конца не изучены. Известно положительное влияние витамина Е при лечении нарушения процесса оплодотворения, при повторяющихся непроизвольных абортах, некоторых форм мышечной слабости и дистрофии. Показано применение витамина Е для недоношенных детей и детей, находящихся на искусственном вскармливании, так как в коровьем молоке в 10 раз меньше витамина Е, чем в женском. Дефицит витамина Е проявляется развитием гемолитической анемии, возможно из-за разрушения мембран эритроцитов в результате ПОЛ.
29. Витамины К (нафтохиноны)
Витамин К существует в нескольких формах в растениях как филлохинон (К1), в клетках кишечной флоры как менахинон (К2).
Источники витамина К - растительные (капуста, шпинат, корнеплоды и фрукты) и животные (печень) продукты. Кроме того, он синтезируется микрофлорой кишечника. Обычно авитаминоз К развивается вследствие нарушения всасывания витамина К в кишечнике, а не в результате его отсутствия в пище.
Суточная потребность в витамине взрослого составляет 1-2 мг. Биологическая функция витамина К связана с его участием в процессе свёртывания крови (рис. 3-6). Он участвует в активации факторов свёртывания крови: протромбина (фактор II), проконвертина (фактор VII), фактора Кристмаса (фактор IX) и фактора Стюарта (фактор X). Эти белковые факторы синтезируются как неактивные предшественники. Один из этапов активации - их карбокси-лирование по остаткам глутаминовой кислоты с образованием у-карбоксиглутамино-вой кислоты, необходимой для связывания ионов кальция (см. раздел 13). Витамин К участвует в реакциях карбоксилирования в качестве кофермента.
Для лечения и предупреждения гиповитаминоза К используют синтетические производные нафтохинона: менадион, викасол, синкавит.
Основное проявление авитаминоза К - сильное кровотечение, часто приводящее к шоку и гибели организма.
30. Витамин С (аскорбиновая кислота)
Аскорбиновая кислота - лактон кислоты, близкой по структуре к глюкозе. Существует в двух формах: восстановленной (АК) и окисленной (дегидроаскорбиновой кислотой, ДАК).
Обе эти формы аскорбиновой кислоты быстро и обратимо переходят друг в друга и в качестве коферментов участвуют в окислительно-восстановительных реакциях. Аскорбиновая кислота может окисляться кислородом воздуха, пероксидом и другими окислителями. ДАК легко восстанавливается цистеином, глутатионом, сероводородом. В слабощелочной среде происходят разрушение лактонового кольца и потеря биологической активности. При кулинарной обработке пищи в присутствии окислителей часть витамина С разрушается.
Источники витамина С - свежие фрукты, овощи, зелень (табл. 3-1).
Биологические функции. Главное свойство аскорбиновой кислоты - способность легко окисляться и восстанавливаться. Вместе с ДАК она образует в клетках окислительно-восстановительную пару с редокс-потенциалом +0,139 В. Благодаря этой способности аскорбиновая кислота участвует во многих реакциях гидроксилирования: остатков Про и Лиз при синтезе коллагена (основного белка соединительной ткани), при гидроксилировании дофамина, синтезе стероидных гормонов в коре надпочечников
В кишечнике аскорбиновая кислота восстанавливает Fe3+в Fe2+, способствуя его всасыванию, ускоряет освобождение железа из ферритина (см. раздел 13), способствует превращению фолата в коферментные формы. Аскорбиновую кислоту относят к природным антиоксидантам (см. раздел 8). Большое значение этой роли витамина С придавал известный американский учёный Л. Полинг, дважды лауреат Нобелевской премии. Он рекомендовал использовать для профилактики и лечения ряда заболеваний (например, простудных) большие дозы аскорбиновой кислоты (2-3 г).
Клинические проявления недостаточности витамина С. Недостаточность аскорбиновой кислоты приводит к заболеванию, называемому цингой (скорбут). Цинга, возникающая у человека при недостаточном содержании в пищевом рационе свежих фруктов и овощей, описана более 300 лет назад, со времени проведения длительных морских плаваний и северных экспедиций. Это заболевание связано с недостатком в пище витамина С. Болеют цингой только человек, приматы и морские свинки. Главные проявления авитаминоза обусловлены в основном нарушением образования коллагена в соединительной ткани. Вследствие этого наблюдают разрыхление дёсен, расшатывание зубов, нарушение целостности капилляров (сопровождающееся подкожными кровоизлияниями). Возникают отёки, боль в суставах, анемия. Анемия при цинге может быть связана с нарушением способности использовать запасы железа, а также с нарушениями метаболизма фолиевой кислоты.
31. .Врожденные нарушения обена моносахаридов . Галактоземия. Напомним, что распад галактозы, осуществляющийся главным образом в печени, ткани мозга и клетках крови, протекает через такие этапы"
1. Галактоза —— Галактозо-1-фосфат.
2. Галактозо-1-фосфат + АТФ ———- УДФ-галактоза + АДФ.
3. УДФ-галактоза ———- УДФ-глюкоза.
Первую реакцию катализирует галактокиназа, вторую — галактозо-1-фосфатуридинтрансфераза, третью — галактозо-УДФ-эпимераза. У здоровых новорожденных активность этих ферментов высока, однако известны случаи их врожденного дефицита.
1. Дефицит галактокиназы проявляется ухудшением зрения, вызванным образованием катаракт (юношеская катаракта). В моче обнаруживаются галактоза и дульцит (так называемый сахарный спирт, в который превращается галактоза). Снижена активность галактокиназы в эритроцитах.
2. Дефицит галактозо-1-фосфатуридинтрансферазы ведет к накоплению Г-1-Ф в клетках крови, печени, почках, мозге и хрусталике, к появлению в тканях дульцита. В хрусталике дульцит из-за высокой способности связывать воду приводит к разрыву анулярных волокон и образованию катаракт. При кормлении галактозосодержащей пищей у ребенка развиваются желтуха, диарея и гипотрофия. При исключении галактозы из питания эти признаки достаточно быстро исчезают.
Решающее значение для диагноза имеет установление низкой активности фермента в эритроцитах, галактозо-1'фосфатемия и галактозо-1-фосфату-рия.
Отметим, что избыток Г-1-Ф тормозит глюкозо-6-фосфатазу и глюкозо-6-фосфатдегидрогеназу. Это ведет к нарушению основного и пентозофосфатного путей превращения углеводов.
3. Дефицит галактозо-УДФ-эпимеразы описан в единичных случаях. Клинические проявления отсутствуют. Имеются галактоземия и галактозурия.
Эссенциальная фруктозурия обусловлена недостаточностью фосфофрукто-киназы, которая катализирует превращение фруктозы в фруктозо-1-фосфат. Фруктоза накапливается в крови и выделяется с мочей. Клинические проявления отсутствуют. Фруктозурию выявляют обычно при наличии гипергликемии и одновременном отсутствии в моче редуцирующих Сахаров. При отсутствии других признаков сахарного диабета прибегают к специфическим способам определения глюкозы (глюкозооксидазный метод) и не находят повышенного содержания глюкозы. В этом случае специальным приемом устанавливают фруктоземию и фруктозурию.
Наследственная непереносимость фруктозы проявляется вслед за введением в рацион ребенка фруктов или соков, содержащих фруктозу или ее источник — сахарозу.
Заболевание связано с дефицитом фруктозо-1-фосфатальдолазы. Фермент катализирует расщепление фруктозо-1-фосфата до 3-ФГА, обеспечивая включение фруктозы в основной путь превращения глюкозы. В результате дефекта накапливается фруктозо-1-фосфат, развиваются гипофосфатемия из-за превращения фосфата преимущественно в фруктозо-1-фосфат и гипогликемия в связи с нарушением гликогенолиза и глюконеогенеза, что также вызвано дефицитом свободного фосфата. Гипогликемия связана также и с торможением фосфорилазы «а» фруктозо-1-фосфатом.
Таким образом, важнейшие лабораторные признаки заболевания: фруктозе-мия, фруктозурия и фруктозо-1-фосфатурия, а также лактатемия, гиперури-кемия и гипогликемия после нагрузки фруктозой.
Недостаточность фруктозо-1,6-фосфатальдолазы — фермента, расщепляющего фруктозо-1,6-дифосфат, также ведет к накоплению фруктозы. Проявления сходны с описанными выше, с той разницей, что не наблюдается выраженного поражения печени. Заболевание можно заподозрить, обнаружив гипогликемию и появление сахара в моче, усиливающиеся после приема пищи, содержащей фруктозу. Активность альдолазы в биоптатах печени значительно снижена.
32. Метаболизм галактозы и фруктозы
Галактоза и фруктоза вступают на путь гликолиза, преобразуясь в метаболиты этого процесса
Галактоза + АТФ ———'• Галактозо-1-фосфат + АДФ (катализатор — галактокиназа)
Затем следует обменная реакция, катализируемая галактозо-1-фосфат-уридилтрансфераэой'
Галактозо-1-фосфат + УДФ ———- УДФ-галактоза + фосфат
Далее галактоза в составе УДФ под действием эпимеразы (УДФ-галактозо-4-эпимераза) меняет конфигурацию ОН-группы при С-4, инвертируется в глюкозо-1-фосфат, освобождаясь одновременно от УДФ'
эпимераза Галактозо-1-УДФ ————————> Глюкозо-1 -фосфат + УДФ
Фруктоза в печени превращается по фруктозо-1-фосфатному пути:
(реакция двустадийная, катализирует ее фрукто-1-фосфатальдолаза и триозокиназа).
В жировой ткани фруктоза может метаболизировать непосредственно в фруктозо-6-фосфат — промежуточный продукт основного пути окисления глюкозы
??? 33. Жирные кислоты поступают с пищей или синтезируются в организме (кроме полиеновых кислот). Субстраты, необходимые для синтеза жирных кислот, образуются при катаболизме глюкозы и таким образом, часть глюкозы превращается сначала в жирные кислоты, а затем в жиры. Хотя специфический путь катаболизма жирных кислот заканчивается образованием ацетил-КоА, служащим исходным субстратом для синтеза жирных кислот, процессы синтеза и окисления жирных кислот необратимы. Они происходят в разных компартментах клеток (биосинтез протекает в цитозоле, а окисление - в митохондриях) и катализируются разными ферментами. Окисление жирных кислот как источников энергии увеличивается в постабсорбтивный период, при голодании и физической работе. В этих состояниях их концентрация в крови увеличивается в результате мобилизации из жировых депо, и они активно окисляются печенью, мышцами и другими тканями. При голодании часть жирных кислот в печени превращается в другие "топливные" молекулы - кетоновые тела. Они, в отличие от жирных кислот, могут использоваться нервной тканью как источник энергии. При голодании и длительной физической работе кетоновые тела служат источником энергии для мышц и некоторых других тканей.
А. β-Окисление жирных кислот
β-Окисление - специфический путь катаболизма жирных кислот, при котором от карбоксильного конца жирной кислоты последовательно отделяется по 2 атома углерода в виде ацетил-КоА. Метаболический путь - β-окисление - назван так потому, что реакции окисления жирной кислоты происходят у β-углеродного атома. Реакции β-окисления и последующего окисления ацетил-КоА в ЦТК служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования. β-Окисление жирных кислот происходит только в аэробных условиях.
Активация жирных кислот
Перед тем, как вступить в различные реакции, жирные кислоты должны быть активированы, т.е. связаны макроэргической связью с коферментом А:
RCOOH + HSKoA + АТФ → RCO ~ КоА + АМФ + PPi.
Реакцию катализирует фермент ацил-КоА син-тетаза. Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой: Н4Р2О7 + Н2О → 2 Н3РО4.
Выделение энергии при гидролизе макроэргической связи пирофосфата смещает равновесие реакции вправо и обеспечивает полноту протекания реакции активации.
-КоА ингибирует β-окисление жирных кислот, которые могут использоваться для синтеза жира.
№34 .Генерация энергии. Независимо от характера вовлекающегося в обменные процессы химического соединения высвобождение заключенной в его химических связях энергии осуществляется главным образом путем их окислительно-восстановительного распада. Объединяющий момент — наличие единой ля всех соединений структуры, обеспечивающей постепенное высвобождение .энергии. Такая система — цепь дыхательных ферментов и конечный акцептор водорода (молекулярный кислород), который доставляется с помощью единого для всех случаев механизма (транспорт в форме оксигемоглобина). Интегрирующим моментом является и то, что энергия, высвобождаемая при переносе протонов и электронов по дыхательной цепи, запасается путем синтеза универсального макроэргического соединения (или группы родственных соединений).
Реже энергия генерируется путем внутримолекулярной перестройки, ведущей к возникновению макроэргической связи. Этот путь генерации также интегрирует обмен всех видов молекул, так как во всех случаях акцепторы макроэргической связи — сходные соединения — дифосфорные эфиры нуклеозидов.
№35. Гликогенозы — общее название синдромов, обусловленных наследственными дефектамиферментов, участвующих в синтезе или расщеплении гликогена
Гликогенозы — состояния, обусловленные энзимдефектом, который проявляется необычной структурой гликогена или его избыточным накоплением.
Описано 6 типов гликогенозов, различающихся характером энзимдефекта.
Тип I (гликогеноз Гирке) — следствие дефицита гликозо-6-фосфатазы. Встречается наиболее часто, проявляется гипогликемией, накоплением гликогена в печени и почках, ацидозом (за счет накопления лактата), гепатосплено-мегалией. Больные отличаются малым ростом.
Наиболее характерные биохимические сдвиги: снижено содержание глюкозы в крови, не повышается ее содержание при введении активаторов фосфорилазы гликогена (адреналин, глюкагон), гиперурикемия, гиперлактатемия, гиперпируватемия и гиперлипемия.
Тип II (гликогеноз Помпе) обсуловлен дефектом кислой 0-1,4-глюкозидазы. Проявляется генерализованным накоплением гликогена, протекающим с поражением печени, почек и нервной системы, гипертрофией миокарда. Это наряду с воспалением легких ведет к смерти.
По данным лабораторных исследований, нормогликемия, нормальная реакция на адреналин, гомогенаты тканей не расщепляют гликогена и мальтозы при рН 4,0.
Тип III (лимитдекстриноз) вызывается дефицитом амило-1,6-глюкозидазы, проявляется накоплением короткоцепочных молекул гликогена в печени и мышцах. Течение относительно доброкачественное — гипогликемия, гепатоме-галия, задержка роста.
Наиболее характерные биохимические сдвиги: снижено содержание глюкозы в крови, не повышается ее содержание при введении активаторов фосфорилазы гликогена (адреналин, глюкагон), гиперурикемия, гиперлактатемия, гиперпируватемия и гиперлипемия.
Лабораторно: гипогликемия, нормальная реакция на сахарную нагрузку, гипергликемия на введение адреналина не возникает, гипертриглицеридемия, гиперхолестеринемия, гиперурикемия. Изменена структура гликогена в разных тканях, в том числе и в клетках крови, активность амило-1,6-глюкозидазы в лейкоцитах резко снижена.
Тип IV (болезнь Андерсена, амилопектиноз) сопровождает дефект амило-(1,4 ———•• 1,6)-трансглюкозидазы. В миокарде, клетках скелетной мускулатуры, РЭС и почек накапливается нерастворимый амилопектиноподобный гликоген. Цирроз печени с желтухой и печеночной недостаточностью.
Диагностика требует исключить другие формы гликогеноза и включает обнаружение в биоптатах печени полисахарида с относительно длинными наружными и внутренними цепями молекул, т.е. с меньшим против нормы количеством ответвлений.
Тип У (болезнь Мак-Ардля) вызвана дефицитом фосфорилазы, активирующей р-киназу в мышцах и печени. Печень не поражена, структура гликогена нормальна, смертельные исходы отсутствуют, так как у-амилаза совместно с амило-1,6-гликозидазой расщепляет гликоген до глюкозы
№36. Глюкагон - "гормон голода", вырабатываемый α-клетками поджелудочной железы в ответ на снижение уровня глюкозы в крови. По химической природе глюкагон - пептид.
Глюкагон для гепатоцитов служит внешним сигналом о необходимости выделения в кровь глюкозы за счёт распада гликогена (гликогенолиза) или синтеза глюкозы из других веществ - глюконеогенеза (этот процесс будет изложен позднее). Гормон связывается с рецептором на плазматической мембране и активирует при посредничестве G-белка аденилатциклазу, которая катализирует образование цАМФ из АТФ (см. раздел 5). Далее следует каскад реакций, приводящий в печени к активации гликогенфосфорилазы и ингибированию гликогенсинтазы (рис. 7-29). Этот механизм приводит к высвобождению из гликогена глюкозо-1-фосфата, который превращается в глюкозо-6-фосфат. Затем под влиянием глюкозо-6-фосфатазы образуется свободная глюкоза, способная выйти из клетки в кровь. Таким образом, глюкагон в печени, стимулируя распад гликогена, способствует поддержанию глюкозы в крови на постоянном уровне.
Влияние глюкагона на обмен веществ менее выражено. Он вызывает гипергликемию в первые же полчаса при внутривенном введении. Такое действие является следствием усиленного гликогенолиза в печени, но при длительном введении глюкагон увеличивает количество гликогена в печени, так как резко усиливает глюконеогенез. В отличие от адреналина, глюкагон не влияет на гликоген мышц.
Глюкагон подавляет включение в жирные кислоты и холестерин меченых по углероду глюкозы, фруктозы и уксусной кислоты. Под влиянием глюкагона возрастает потребление кислорода.
Биохимически механизм действия глюкагона связан с тем, что он усиливает образование в печени фермента киназы, связанной с циклической аденозинмонофосфорной кислотой. Эта киназа превращает неактивную фосфорилазу в активную, а активная фосфорилаза вызывает гликогенолиа в печени, отщепляя от гликогена глюкозидные радикалы.
№37 Глюконеогенез — процесс образования в печени и отчасти в корковом веществе почек (около 10 %) молекул глюкозы из молекул других органических соединений — источников энергии, например свободных аминокислот, молочной кислоты,глицерина. Свободные жирные кислоты у млекопитающих для глюконеогенеза не используются.
Стадии глюконеогенеза повторяют стадии гликолиза в обратном направлении и катализируются теми же ферментами за исключением 4 реакций:
Гликолиз и Глюконеогенез
Превращение пирувата в оксалоацетат (фермент пируваткарбоксилаза)
Превращение оксалоацетата в фосфоенолпируват (фермент фосфоенолпируваткарбоксикиназа)
Превращение фруктозо-1,6-дифосфата в фруктозо-6-фосфат (фермент фруктозо-1,6-дифосфатаза)
Превращение глюкозо-6-фосфата в глюкозу (фермент глюкозо-6-фосфатаза)
Суммарное уравнение глюконеогенеза: 2 CH3COCOOH + 4ATP + 2GTP + 2NADH.H+ + 6 H2O = C6H12O6 + 2NAD + 4ADP + 2GDP + 6Pn[1].
