
- •Предисловие
- •Раздел 1
- •Глава 1. Основные понятия и определения 1.1. Изделие и его элементы
- •1.2. Производственный и технологический процессы
- •1.3. Характеристика машиностроительного производства
- •Глава 2. Качество продукции
- •2.1. Основные понятия и определения
- •2.2. Оценка качества продукции
- •Вопросы для самопроверки
- •Глава 3. Базирование и базы в машиностроении 3.1. Общие положения, термины и определения
- •3.2. Выбор баз
- •3.3. Погрешности установки
- •Вопросы для самопроверки
- •Глава 4. Точность обработки 4.1. Общие положения
- •4.2. Погрешности обработки
- •Погрешность основной кинематической схемы обработки
- •Упругие перемещения системы станок — приспособление — инструмент — заготовка
- •Геометрические погрешности станка, приспособлений и режущего инструмента
- •Погрешности обработки, вызываемые размерным изнашиванием инструмента
- •Температурные деформации системы станок— приспособление—инструмент—заготовка
- •Погрешности настройки инструмента на размер
- •4.3. Экономическая точность обработки
- •4.4. Статистические методы исследования точности обработки и определения суммарной погрешности
- •4.5. Расчетно-аналитический метод определения суммарной погрешности
- •4.6. Пути повышения точности механической обработки
- •Вопросы для самопроверки
- •10 Какие пути используют для повышения точности обработку0
- •Глава 5. Качество поверхности деталей машин
- •5.1. Геометрические характеристики и физико-механические свойства поверхностного слоя
- •5.2. Факторы, влияющие на качество обработанной поверхности
- •5.3. Влияние качества поверхности
- •5.4. Пути улучшения качества поверхностного слоя деталей машин
- •Вопросы для самопроверки
- •Глава 6. Технологичность конструкции изделий
- •6.2. Показатели технологичности конструкции изделия
- •6.3. Отработка конструкции изделия на технологичность
- •6.4. Требования к технологичности конструкции деталей машин и сборочных единиц
- •Вопросы для самопроверки
- •7.2. Методы определения припусков на обработку
- •7.3. Краткие сведения о выборе способов изготовления заготовок
- •Вопросы для самопроверки
- •Глава 8. Основы технического нормиования
- •8.2. Структура технически обоснованной нормы времени
- •8.3. Определение квалификации работы
- •Вопросы для самопроверки
- •Раздел 2
- •Глава 9. Последовательность проектирования технологических процессов изготовления машин. Технологическая классификация деталей машин
- •9.2. Основные принципы технологической классификации деталей
- •9.3. Система классификации и кодирования
- •Вопросы для самопроверки
- •Глава 10. Разработка технологических процессов сборки машин и их сборочных единиц
- •10.1. Характеристика сборочных процессов
- •10.2. Организационные формы сборки
- •10.3. Оборудование сборочных цехов
- •10.4. Общие понятия о разработке технологических процессов сборки
- •10.5. Различные методы достижения точности сборки
- •Метод полной взаимозаменяемости
- •Метод неполной взаимозаменяемости
- •Методы регулировки и пригонки
- •Основные пути повышения точности сборки
- •Вопросы для самопроверки
- •Глава 11. Проектирование технологических процессов обработки заготовок
- •11.2. Основные этапы разработки технологических процессов
- •Анализ исходных данных для разработки технологического процесса
- •Выбор действующего типового, группового технологического процесса или поиск аналога единичного процесса
- •Выбор исходной заготовки и методов ее изготовления
- •Выбор технологических баз
- •Разработка технологических операций
- •11.3. Построение операций технологического процесса обработки заготовок
- •I. О д н о м е с т н ы е схемы
- •II. Многоместные схемы
- •11.4. Выбор средств технологического оснащения
- •Выбор средств технологической оснастки
- •11.5. Определение режимов резания
- •11.6. Проектирование типовых и групповых технологических процессов
- •11.7. Краткие сведения о сапр технологических процессов
- •11.8. Экономическая оценка вариантов технологических процессов обработки заготовок
- •Вопросы для самопроверки
- •Глава 12. Методы обработки наружных и внутренних цилиндрических поверхностей
- •12.1. Классификация деталей
- •12.2. Методы обработки наружных цилиндрических поверхностей
- •Фрезерование и протягивание
- •12.3. Методы обработки внутренних цилиндрических поверхностей (отверстий)
- •Обработка отверстий лезвийным инструментом
- •Обработка отверстий абразивным инструментом
- •Пробивка отверстий
- •12.4. Методы упрочнения поверхностей Характеристика методов упрочнения
- •Поверхностно-пластическое деформирование (ппд)
- •Глава 13. Методы обработки плоских поверхностей
- •13.1. Основные методы обработки плоских поверхностей
- •13.2. Обработка плоских поверхностей лезвийным инструментом
- •13.3. Обработка плоских поверхностей абразивным инструментом
- •Вопросы для самопроверки
- •14.1. Краткие сведения о резьбе
- •14.2. Нарезание резьбы лезвийным инструментом Нарезание резьбы резцами и резьбовыми гребенками
- •Нарезание резьбы круглыми плашками и резьбонарезными головками
- •Нарезание внутренней резьбы метчиками
- •Фрезерование резьбы
- •14.3. Шлифование резьбы
- •14.4. Накатывание резьбы
- •Вопросы для самопроверки
- •15.1. Назначение и классификация зубчатых передач
- •15.2. Основные методы формообразования зубьев зубчатых цилиндрических колес
- •Нарезание зубчатых колес методом копирования
- •Нарезание зубьев зубчатых колес методом обкатки
- •15.3. Накатывание зубчатых колес
- •15.4. Обработка торцовых поверхностей зубьев цилиндрических колес
- •15.5. Методы зубоотделочной обработки цилиндрических зубчатых колес
- •Хонингование цилиндрических зубчатых колес
- •15.6. Методы обработки шпоночных и шлицевых поверхностей Обработка шпоночных пазов
- •Обработка шлицевых поверхностей на валах
- •Обработка шлицевых поверхностей в отверстиях
- •15.7. Методы обработки фасонных поверхностей
- •Обработка фасонных поверхностей точением, растачиванием и сверлением
- •Глава 16. Методы изготовления деталей из пластмасс
- •16.1. Свойства и виды пластмасс
- •16.2. Методы изготовления деталей из пластмасс прессованием и литьем
- •16.3. Механическая обработка пластмасс
- •Вопросы для самопроверки
- •Глава 17. Электрофизическая
- •17.1. Виды электрофизической
- •Электроэрозионная обработка
- •Электроконтактная обработка
- •Анодно-механическая обработка
- •Ультразвуковая обработка
- •Плазменная обработка
- •Лазерная обработка
- •Электронно-лучевая обработка
- •17.2. Электрохимические методы обработки
- •Электрохимическое полирование
- •Анодно-гидравлическая обработка
- •Вопросы для самопроверки
- •18. Общие сведения о приспособлениях
- •18.1. Назначение и классификация приспособлений
- •18.2. Условия рентабельности и обеспечения заданной точности обработки при использовании приспособлений
- •Вопросы для самопроверки
- •Глава 19. Элементы приспособлений
- •19.1. Общие понятия
- •19.2. Установочные элементы приспособлений
- •19.3. Зажимные элементы приспособлений
- •19.4. Расчет сил для закрепления заготовок
- •19.5. Устройства для направления
- •19.6. Корпуса и вспомогательные элементы приспособлений
- •Вопросы для самопроверки
- •20.1. Приспособления для токарных и шлифовальных станков
- •20.2. Приспособления для сверлильных и расточных станков
- •20.3. Приспособления для фрезерных станков
- •20.4. Приспособления для зубообрабатывающих станков
- •20.5. Приспособления для протяжных станков
- •20.6. Приспособления для обработки фасонных поверхностей
- •20.7. Приспособления для многоцелевых станков, агрегатных станков и автоматических линий
- •Вопросы для самопроверки
- •Глава 21. Проектирование специальных приспособлений
- •21.1. Исходные данные для проектирования приспособлений
- •21.2. Автоматизация проектирования приспособлений
- •Вопросы для самопроверки
- •Раздел 5
- •Глава 22. Автоматизация производства в машиностроении
- •22.1. Состояние и тенденции развития автоматизации
- •22.2. Применение промышленных роботов
- •22.3. Краткие сведения о гпс
- •22.4. Проектирование технологических процессов обработки заготовок на автоматических линиях Технологические возможности, область применения и классификация автоматических линий
- •Проектирование технологических процессов
- •Особенности разработки технологических процессов обработки заготовок на автоматических линиях
- •Проектирование технологических процессов автоматической сборки
- •22.5. Особенности разработки технологических процессов обработки заготовок деталей машин на станках с чпу
- •Оси координат и направления движений в станках с чпу
- •Системы программного управления и их технологические возможности
- •Технологические возможности станков с чпу
- •Проектирование технологических операций обработки заготовок на станках с чпу
- •Режущий инструмент для станков с чпу
- •Расчет координат опорных точек
- •Вопросы для самопроверки
- •Глава 23. Пути дальнейшего развития технологии машиностроения
- •23.1. Основные направления развития машиностроения
- •23.2. Пути дальнейшего решения общих проблем технологии машиностроения Сокращение и замена ручного труда в машиностроении
- •Совершенствование конструкций режущих инструментов и инструментальных материалов
- •Вопросы для самопроверки
- •Оглавление
19.3. Зажимные элементы приспособлений
Конструкции зажимных устройств состоят из трех основных частей: привода, контактного элемента, силового механизма.
Привод, преобразуя определенный вид энергии, развивает силу Q, которая с помощью силового механизма преобразуется в силу зажима Р и передается через контактные элементы заготовке.
Контактные элементы служат для передачи зажимного усилия непосредственно на заготовку. Их конструкции позволяют рассредоточивать усилия, предотвращая смятие поверхностей заготовки, и распределять между несколькими точками опор.
Известно, что рациональный выбор приспособления сокращает вспомогательное время. Вспомогательное время можно сократить, применяя механизированные приводы.
Механизированные приводы в зависимости от типа и источника энергии могут быть подразделены на следующие основные группы: механические, пневматические, электромеханические, магнитные, вакуумные и др. Область применения механических приводов с ручным управлением ограничена, так как требуются значительные затраты времени на установку и снятие обрабатываемых заготовок. Наибольшее распространение получили приводы пневматические, гидравлические, электрические, магнитные и их комбинации.
Пневматические приводы работают по принципу подачи сжатого воздуха. В качестве пневматического привода могут быть использованы пневматические цилиндры (двустороннего и одностороннего действия) и пневматические камеры.
К недостаткам пневматических приводов относятся их относительно большие габаритные размеры. Сила Q(H) в пневмоцилиндрах зависит от их типа и без учета сил трения ее определяют по следующим формулам:
для пневмоцилиндров двустороннего действия для левой части цилиндра
для полости цилиндра со штоком
для цилиндров одностороннего действия
где р — давление сжатого воздуха, МПа; D — диаметр поршня, мм; d — диаметр штока, мм; г| — КПД, учитывающий потери в цилиндре, при D = 150 ... 200 мм п. = 0,90 ... 0,95; q — сила сопротивления пружин, Н. Давление сжатого воздуха обычно принимают равным 0,4—0,63 МПа.
Пневматические цилиндры применяют с внутренним диаметром 50, 75, 100, 150, 200, 250, 300 мм. Посадка поршня в цилиндре при использовании уплотнительных колец ^- или ,
а при уплотнении манжетами ^ту- или -щ-.
Использование цилиндров диаметром менее 50 мм и более 300 мм экономически невыгодно, в этом случае надо использовать другие виды приводов.
Пневматические камеры имеют ряд преимуществ по сравнению с пневмоцилиндрами: долговечны, выдерживают до 600 тысяч включений (пневмоцилиндры — 10 тысяч); компактны; имеют небольшую массу и проще в изготовлении. К недостаткам относят небольшой ход штока и непостоянство развиваемых усилий.
Гидравлические приводы по сравнению с пневматическими имеют следующие преимущества: развивают большие силы (15 МПа и выше); их рабочая жидкость (масло) практически несжимаема; обеспечивают плавную передачу развиваемых сил силовым механизмом; могут обеспечить передачу силы непосредственно на контактные элементы приспособления; имеют широкую область применения, поскольку их можно использовать для точных перемещений рабочих органов станка и подвижных частей приспособлений; позволяют применять рабочие цилиндры небольшого диаметра (20, 30, 40, 50 мм и более), что обеспечивает их компактность.
Пневмогидравлические приводы обладают рядом преимуществ по сравнению с пневматическими и гидравлическими: имеют высокие рабочие силы, быстроту действия, низкую стоимость и небольшие габариты.
Электромеханические приводы находят широкое применение в токарных станках с ЧПУ, агрегатных станках, автоматических линиях. Приводятся в действие от электродвигателя и через механические передачи, силы передаются на контактные элементы зажимного устройства.
Электромагнитные и магнитные зажимные устройства выполняют преимущественно в виде плит и планшайб для закрепления стальных и чугунных заготовок. Используется энергия магнитного поля от электромагнитных катушек или постоянных магнитов. Технологические возможности применения электромагнитных и магнитных устройств в условиях малосерийного производства и групповой обработки значительно расширяются при использовании быстросменных наладок. Эти устройства повышают производительность труда за счет снижения вспомогательного и основного времени (в 10—15 раз) при многоместной обработке.
Вакуумные приводы применяют для крепления заготовок из различных материалов с плоской или криволинейной поверхностью, принимаемой за основную базу. Вакуумные зажимные устройства работают по принципу использования атмосферного давления.
Сила (Н), прижимающая заготовку к плите: P = F (0,1-р)10-*,
где F — площадь полости приспособления, из которой удаляется воздух, см2; р — давление (в заводских условиях обычно р = = 0,01 ... 0,015 МПа).
Давление для индивидуальных и групповых установок создается одно- и двухступенчатыми вакуумными насосами.
Силовые механизмы выполняют роль усилителя. Основная их характеристика — коэффициент усиления
(/):
р — Сила закрепления, приложенная к заготовке, Н; Q — сила, развиваемая приводом, Н.
Силовые механизмы выполняют часто роль самотормозящего элемента в случае внезапного выхода из строя привода.
Классификация зажимных устройств приведена на рис. 19.5. Некоторые типовые схемы конструкций зажимных устройств показаны на рис. 19.6.