Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MPT (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
101.82 Кб
Скачать

6 Билет

Устройства, предназначенные для формирования функций алгебры логики, в дальнейшем будем называть логическими устройствами или цифровыми устройствами.

В классической математике для задания функции обычно используются два способа: аналитический (запись формулой) и табличный (таблицами значения функций, какие приводятся, например, в справочниках). Подобными же спосабами могут задаваться логические функции. При использовании табличного способа строится так называемая таблица истинности, в которой приводятся все возможные сочетания значений аргументов и соответствующие им значения логической функции. Так как число таких сочетаний конечно, таблица истинности позволяет определять значение функции для любых значений аргументов (в отличии от таблиц математических функций, которые позволяют задавать значения функции не для всех, а лишь для некоторых значений аргументов). Возможен и аналитический способ записи логической функции. В обычной математике аналитический способ представления функции предполагает запись функции в виде математического выражения, в котором аргументы функции связываются определенными математическими операциями. Подобно этому аналитический способ задания логической функции предусматривает запись функции в форме логического выражения, показывающего, какие и в какой последовательности должны выполняться логические операции над аргументами функции. ………………………………….

7 Билет

Логические устройства разделяют на два класса: комбинационные и последовательностные.

Устройство называют комбинационным, если его выходные сигналы в некоторый момент времени однозначно определяются входными сигналами, имеющими место этот момент времени.

Иначе устройство называют последовательностным или конечным автоматом (цифровым автоматом, автоматом с памятью). В последовательностных устройствах обязательно имеются элементы памяти. Состояние этих элементов зависит от предыстории поступления входных сигналов. Выходные сигналы последовательностных устройств определяются не только сигналами, имеющимися на входах в данный момент времени, но и состоянием элементов памяти. Таким образом, реакция последовательностного устройства на определенные входные сигналы зависит от предыстории его работы.

8 Билет

Логические устройства строятся на логических элементах, которые реализуют определённую функцию. Базовыми логическими функциями являются логическое сложение, логическое умножение и логическое отрицание.

1) ИЛИ (OR) - логическое сложение или дизъюнкция (от англ. disjunction - разъединение) - на выходе этого элемента появится логическая единица тогда, когда хотя бы на одном из входов появится единица. Логический ноль на выходе будет только тогда, когда на всех входах будет сигнал логического нуля.

Эту операцию можно реализовать с помощью контактной цепи с двумя параллельно включенными контактами. «1» на выходе такой цепи появится в том случае, если хотя бы один из контактов замкнут.

2) И (AND) - логическое умножение или конъюнкция (от англ. conjunction — соединение, & - амперсанд) - на выходе этого элемента сигнал логической единицы появляется только тогда, когда на всех входах будет присутствовать логическая единица. Если хотя бы на одном входе будет ноль, то и на выходе тоже будет ноль.

Эта операция может быть реализована контактной цепью, состоящей из последовательно включённых контактов.

3) НЕ (NOT) - логическое отрицание или инверсия, обозначается черточкой над переменной - операция выполняется над одной переменной x и значение у противоположно этой переменной.

Операция НЕ может быть осуществлена с помощью нормально замкнутого контакта электромагнитного реле: нет напряжения на обмотке реле (x = 0) – контакт замкнут и на выходе «1» (у = 1). При наличии напряжения на обмотке реле (х = 1) контакт разомкнут и на выходе «0» (у = 0). 

9 билет

10 билет

11 билет

Позиционная систе́ма счисле́ния (позиционная нумерация) — система счисления, в которой значение каждого числового знака (цифры) в записи числа зависит от его позиции (разряда).

12 билет

Результатом является целое число. 1. Из десятичной системы счисления - в двоичную и шестнадцатеричную: 

  1. исходное целое число делится на основание системы счисления, в которую переводится (2 или 16); получается частное и остаток;

  2. если полученное частное не делится на основание системы счисления так, чтобы образовалась целая часть, отличная от нуля, процесс умножения прекращается, переходят к шагу в). Иначе над частным выполняют действия, описанные в шаге а);

  3. все полученные остатки и последнее частное преобразуются в соответствии с таблицей в цифры той системы счисления, в которую выполняется перевод;

  4. формируется результирующее число: его старший разряд - полученное последнее частное, каждый последующий младший разряд образуется из полученных остатков от деления, начиная с последнего и кончая первым. Таким образом, младший разряд полученного числа - первый остаток от деления, а старший - последнее частное.

Пример 3.1. Выполнить перевод числа 19 в двоичную систему счисления:

Пример 3.2. Выполнить перевод числа 19 в шестнадцатеричную систему счисления: 

Пример 3.3. Выполнить перевод числа 123 в шестнадцатеричную систему счисления:

13 билет

14 билет

15 билет

16 билет

Триггер (триггерная система) — класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

Отличительной особенностью триггера как функционального устройства является свойство запоминания двоичной информации. Под памятью триггера подразумевают способность оставаться в одном из двух состояний и после прекращения действия переключающего сигнала. Приняв одно из состояний за «1», а другое за «0», можно считать, что триггер хранит (помнит) один разряд числа, записанного в двоичном коде.

При изготовлении триггеров применяются преимущественно полупроводниковые приборы (обычно биполярные и полевые транзисторы), в прошлом — электромагнитные релеэлектронные лампы. В настоящее время логические схемы, в том числе с использованием триггеров, создают в интегрированных средах разработки под различные программируемые логические интегральные схемы (ПЛИС). Используются, в основном, в вычислительной технике для организации компонентов вычислительных систем: регистровсчётчиковпроцессоровОЗУ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]