3. Выработка электроэнергии
Мировыми лидерами в производстве ядерной электроэнергии являются:
США (836,63 млрд кВт·ч/год), работает 104 атомных реактора (20 % от вырабатываемой электроэнергии)[2]
Франция (439,73 млрд кВт·ч/год),
Япония (263,83 млрд кВт·ч/год),
Россия (177,39 млрд кВт·ч/год),
Корея (142,94 млрд кВт·ч/год)
Германия (140,53 млрд кВт·ч/год).
В мире действует 436 энергетических ядерных реакторов общей мощностью 371,923 ГВт[5], российская компания «ТВЭЛ» поставляет топливо для 73 из них (17 % мирового рынка)[6].
4. Классификация
4.1 По типу реакторов
Атомные электростанции классифицируются в соответствии с типом используемых реакторов:
с реакторами на тепловых нейтронах, в том числе с:
водо-водяными
кипящими
тяжеловодными
газоохлаждаемыми
графито-водными
высокотемпературными газоохлаждаемыми
тяжеловодными газоохлаждаемыми
тяжеловодными водоохлаждаемыми
кипящими тяжеловодными
с реакторами на быстрых нейтронах
Реа́ктор на тепловы́х нейтро́нах — ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны тепловой части спектра энергии —«теплового спектра» . Использование нейтронов теплового спектра выгодно потому, что сечение взаимодействия ядер урана-235 с нейтронами, участвующими в цепной реакции, растёт по мере снижения энергии нейтронов, а ядер урана-238 остаётся при низких энергиях постоянным. В результате, самоподдерживающаяся реакция при использовании природного урана, в котором делящегося изотопа 235U всего 0,7%, невозможна на быстрых нейтронах (спектра деления) и возможна на медленных (тепловых).
Активная зона реактора на тепловых нейтронах состоит из замедлителя, ядерного топлива, теплоносителя и конструкционных материалов. Для уменьшения загрузки ядерного топлива в реакторах на тепловых нейтронах применяют конструкционные материалы с малым сечением радиационного захвата нейтронов. К ним относятсяалюминий, магний, цирконий и др. Небольшие потери нейтронов в замедлителе и конструкционных материалах дают возможность использовать в качестве ядерного топлива для реакторов на тепловых нейтронах природный и слабообогащённый уран.
Для конструкций мощных энергетических реакторов не всегда удается подобрать подходящие материалы с небольшим сечением поглощения. Часто оболочки, каналы и другие части конструкции реакторов изготовляют из таких интенсивно поглощающих нейтроны материалов, как нержавеющая сталь, а дополнительные потери тепловых нейтронов в конструкционных материалах компенсируются использованием урана с высоким обогащением — до 10 %.
В реакторах на тепловых нейтронах весьма существенно поглощение нейтронов продуктами деления, для компенсации которого в активную зону перед началом кампании добавляют определённую массу ядерного топлива. Эта добавка увеличивается с ростом кампании и удельной мощности реактора.
Водо-водяной ядерный реактор — реактор, использующий в качестве замедлителя и теплоносителя обычную (лёгкую) воду. Наиболее распространённый в мире тип водо-водяных реакторов — с водой под давлением. В России производятся реакторы ВВЭР, в других странах общее название таких реакторов PWR (Реактор с водой под давлением, англ. Pressurized water reactor). Другой тип водо-водяных реакторов — «кипящие». Общее название таких реакторов BWR (Кипящий водяной реактор, англ. Boiling water reactor).
Конструкция
Устройство реактора ВВЭР-1000:
1 — привод СУЗ;
2 — крышка реактора;
3 — корпус реактора;
4 — блок защитных труб (БЗТ);
5 — шахта;
6 — выгородка активной зоны;
7 — топливные сборки (ТВС), регулирующие стержни.
Активная зона водо-водяного реактора набрана из тепловыделяющих сборок, заполненных пластинчатыми или цилиндрическими тепловыделяющими элементами. Корпус тепловыделяющей сборки изготовляют из листового материала (алюминия, циркония), слабо поглощающего нейтроны. Сборки размещают в цилиндрической клетке, которая вместе со сборками помещается в корпус реактора. Кольцевое пространство между ним и внешней стенкой клетки, заполненное водой, выполняет роль отражателя. Вода, проходя снизу вверх через зазоры между тепловыделяющими элементами, охлаждает их. Таким образом, она выполняет роль теплоносителя, замедлителя и отражателя. Корпус реактора рассчитывается на прочность, исходя из давления воды. Горловина корпуса закрывается герметической крышкой, которая снимается при загрузке и выгрузке тепловыделяющих сборок.
В физических водо-водяных реакторах обычно используют воду под атмосферным давлением. Корпуса таких реакторов герметичной крышки не имеют, и вода в них находится под атмосферным давлением (имеет открытый уровень).
Энергетические водо-водяные реакторы (в частности, ВВЭР) должны работать с использованием воды под давлением. Применение воды в качестве теплоносителя и замедлителя определяет ряд специфических особенностей реакторов. Поэтому обычно эти реакторы выделяются в самостоятельную группу и именуются реакторами, охлаждаемыми водой под давлением.
Примеры водо-водяных реакторов:
ВВЭР (СССР, Россия)
PWR (например, производства компании «Westinghouse Electric»,США)
EPR (AREVA, Франция — Германия)
AP1000 (Westinghouse, США); CAP1400 (Китай)
Кипящий водо-водяной реактор
Схема кипящего корпусного
ядерного реактора: 1,2 — стержни системы управления и защиты (в большинстве случаев располагаются снизу); 3 — ядерное топливо; 4 — биологическая защита; 5 — выход пароводяной смеси; 6 — вход воды; 7 — корпус
Кипящий водо-водяной реактор (англ. Boiling Water Reactor (BWR)) — тип корпусного водо-водяногоядерного реактора, в котором пар генерируется непосредственно в активной зоне и направляется в турбину.
Кроме этого типа реакторов кипящими могут быть канальные ядерные реакторы графито-водного типа, например РБМК и ЭГП-6.
Отличительные особенности
В АЭС с некипящими реакторами температура воды в первом контуре ниже температуры кипения. При необходимых для получения приемлемого коэффициента полезного действия температурах (больше 300 °C) это возможно только при высоких давлениях (в реакторах ВВЭР-1000 рабочее давление в корпусе 160 атм), что требует создания высокопрочного корпуса. Насыщенный водяной пар под давлением 12—60 атм при температуре до 330 °C вырабатывается во втором контуре. В кипящих реакторах пароводяную смесь получают в активной зоне. Давление воды в первом контуре составляет около 70 атм. При этом давлении вода закипает в объёме активной зоны при температуре 280 °C. Кипящие реакторы обладают рядом достоинств по сравнению с некипящими. В кипящих реакторах корпус работает при более низком давлении, в схеме АЭС нетпарогенератора.
Особенность кипящих реакторов заключается в том, что у них отсутствует борное регулирование, компенсация медленных изменений реактивности (например, выгорания топлива) производится только межкассетными поглотителями, выполненными в виде креста. Борное регулирование неосуществимо из-за хорошей растворимости бора в паре (большая его часть будет уноситься в турбину). Бор вводят лишь на время перегрузки топлива для создания глубокой подкритичности.
В большинстве кипящих реакторов поглощающие стержни системы управления и защиты располагаются снизу. Таким образом значительно повышается их эффективность, так как максимум потока тепловых нейтронов смещён в реакторах этого типа в нижнюю часть активной зоны. Такая схема также более удобна при перегрузках топлива и освобождает верхнюю часть реактора от приводов СУЗ, позволяя таким образом более удобно организовать сепарацию пара[1].
Тяжелово́дный я́дерный реа́ктор (англ. Pressurised Heavy Water Reactor (PHWR)) — ядерный реактор, который в качестве теплоносителя и замедлителя использует D2O — тяжёлую воду. Так как дейтерий имеет меньшее сечение поглощения нейтронов, чем лёгкий водород, такие реакторы имеют улучшенный нейтронный баланс (то есть для них требуется менее обогащённый уран), что позволяет использовать в качестве топлива природный уран в энергетических реакторах или использовать «лишние» нейтроны для наработки изотопов.
Графи́то-га́зовый я́дерный реа́ктор (ГГР) — корпусной ядерный реактор, в котором замедлителем служит графит, теплоносителем — газ (гелий, углекислый газ и пр.). По сравнению с ВВР и ГВР, реакторы с газовым теплоносителем наиболее безопасны. Это объясняется тем, что газ практически не поглощает нейтроны, поэтому изменение содержания газа в реакторе не влияет на реактивность.
В Великобритании работает несколько АЭС с ГГР, тепло от которых отводится углекислым газом. Оболочки ТВЭЛов и каналы в ГГР изготовляют из сплавов магния, слабо поглощающих нейтроны. Это позволяет использовать в качестве ядерного топлива природный и слабообогащённый уран. Углекислый газ прокачивают через реактор под давлением 10—20 атм. Его температура на выходе около 400 °C. Удельная мощность реактора составляет всего 0,3—0,5 кВт/кг, то есть примерно в 100 раз меньше, чем в ВВР и ГВР. В усовершенствованных ГГР оболочки из сплава магния заменены оболочками из нержавеющей стали, а природный уран — двуокисью обогащённого урана. Такие изменения в конструкции ТВЭЛа позволили повысить температуру углекислого газа на выходе до 690 °C, удельную мощность—примерно в 3,5 раза, а КПД АЭС — до 40 %.
Графи́то-во́дный я́дерный реактор (ГВР, водно-графитовый реактор (ВГР), уран-графитовый реактор; по классификации МАГАТЭ - LWGR, light water graphite reactor) — гетерогенный ядерный реактор, использующий в качестве замедлителя графит, а в качестве теплоносителя — обычную воду.
По уран-графитовой схеме были сделаны первые экспериментальные и промышленные реакторы, а также реакторы для АЭС. В том числе реактор Первой в мире АЭС был уран-графитовым (Реактор АМ). В настоящее время работают несколько гражданских энергетических АЭС с уран-графитовыми реакторами, в том числе реакторы типа РБМК и ЭГП.
На конец 2011 года в мире работает 15 реакторов, относящихся к типу LWGR, все они расположены в России. Еще один реактор на 915 МВт находится на стадии строительства.[1]
В России развитие канальной концепции осуществляет НИКИЭТ. Эволюционным развитием канальной концепции является проект реакторной установки 3-его поколения МКЭР.
Прорабатываются также материалы по канальной уран-графитовому реактору ВГЭРС.
Реактор на быстрых нейтронах — ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны с энергией > 105 эВ.
Принцип действия
В активную зону и отражатель реактора на быстрых нейтронах входят в основном тяжёлые материалы. Замедляющие ядра вводят вактивную зону в составе ядерного топлива (карбид урана UC, двуокись плутония PuO2 и пр.) и теплоносителя. Концентрацию замедлителя в активной зоне стремятся уменьшить до минимума, так как лёгкие ядра смягчают энергетический спектр нейтронов. Прежде чем поглотиться, нейтроны деления успевают замедлиться в результате неупругих столкновений с тяжёлыми ядрами лишь до энергий 0,1—0,4 МэВ.
Сечение деления в быстрой области энергий не превышает 2 барн. Поэтому для осуществления цепной реакции на быстрых нейтронах необходима высокая концентрация делящегося вещества в активной зоне — в десятки раз больше концентрации делящегося вещества в активной зоне реактора на тепловых нейтронах. Несмотря на это, проектирование и строительство дорогостоящих реакторов на быстрых нейтронах экономически выгодно, так как на каждый захват нейтрона в активной зоне такого реактора испускается в 1,5 раза больше нейтронов деления, чем в активной зоне реактора на тепловых нейтронах. Следовательно, для переработки ядерного сырья в реакторе на быстрых нейтронах можно использовать значительно бо́льшую долю нейтронов. Это главная причина, из-за которой проводят широкие исследования в области применения реакторов на быстрых нейтронах.
Отражатель реакторов на быстрых нейтронах изготавливают из тяжёлых материалов: 238U, 232Th. Они возвращают в активную зону быстрые нейтроны с энергиями выше 0,1 МэВ. Более холодные нейтроны, захваченные ядрами 238U, 232Th, расходуются на получение делящихся ядер 239Pu и 233U.
Мощность реактора регулируется подвижными тепловыделяющими сборками — ТВЭЛами со стержнями из природного урана или тория. В небольших реакторах на быстрых нейтронах более эффективен как регулятор подвижный отражатель: ходом цепной реакции управляют, изменяя утечку нейтронов. Если слой отражателя удалять из реактора, то утечка нейтронов увеличивается, вследствие чего тормозится развитие цепного процесса, и наоборот. Наиболее эффективны подвижные слои отражателя на границе с активной зоной.
Выбор конструкционных материалов для реакторов на быстрых нейтронах практически не ограничивается сечением поглощения, так как эти сечения в области быстрых энергий у всех веществ очень малы по сравнению с сечением деления. По этой же причине захват нейтронов продуктами деления мало влияет на загрузку ядерного топлива в реактор.
