
Классификация литографических процессов
Оптическая литография или фотолитография обычно использует излучение с длиной волны λ = 0,36-0,45 мкм. Если поделить пополам это значение, получим теоретически возможное разрешение рисунка микросхемы. На практике оно будет несколько хуже (1-2 мкм). Такой уровень разрешающей способности достаточен для получения большей части современных печатных плат (носителей микросхем), но уже недостаточен для большинства современных интегральных микросхем. Маленький шажок вперед позволило сделать использование глубокого ультрафиолетового излучения (λ = 0,2- 0,3 мкм). Появилась возможность воспроизводить элементы с размерами 0,5 - 0,8 мкм и менее. Большой шаг вперед позволило сделать использование иных, более коротковолновых излучений (рентгенолитография, электронолитография).
Рентгенолитография (λ = 0,2 - 10 нм) — один из наиболее высокоразрешающих методов литографии. Она позволяет получить рисунок с размерами элементов 0,1 мкм и менее. Электронная литография обладает наиболее высокой разрешающей способностью. Дебройлевская длина волны электрона (электрон - это еще и волна) менее 0, 1 нм. И эффекты дифракции, ограничивающие разрешающую способность электронной литографии, очень малы. Но имеются и другие осложняющие факторы, например, рассеяние электронов в слое резиста, их отражение от подложки, поэтому реально достижимый уровень разрешения хуже. Наибольшее практическое значение получила сканирующая электронная литография. Ее основное достоинство — отсутствие специальных шаблонов для создания требуемой топологии интегральных схем.
Ионно-лучевая литография (англ. ion beam lithography) — технология изготовления электронных микросхем, использующая литографический процесс с экспонированием (облучением) резиста ионными пучками нанометрового сечения с длиной волны 10-200 нм.
Фотолитография, ее разновидности
фотолитогра́фия
1) литография с использованием печатной формы, созданной на поверхности литографского камня посредством фотокопирования; оттиск, полученный с такой формы. 2) Фотолитография в планарной технологии — способ образования на поверхности полупроводникового кристалла (подложки) маски с «окнами» определённой формы и размеров для последующего формирования элементов интегральных схем и других электронных приборов. Осуществляется фотокопированием изображения маски на слой фоторезиста (покрывающий кристалл), который после соответствующей химической обработки (вскрытия «окон») становится такой маской. Разновидности Ф.: т. наз. взрывная (для получения рисунка на пленках металла) и инверсионная (для получения профиля изображения с отрицат. наклоном стенок). В первом случае рисунок получается путем напыления слоя металла на пластину с проявленным фоторезистом, а при снятии фоторезиста удаляют часть металлич. слоя, осевшего на маску; во втором - на позитивном фоторезисте получают негативный рисунок.
Фоторезисты: виды фоторезистов
Фоторезисты- сложные полимерные композиции, в состав которых входят светочувствительные и пленкообразующие компоненты, растворители, некоторые добавки, улучшающие адгезию слоя резиста к подложке, повышающие светочувствительность и кислотостойкость или щелочестойкость.
Светочувствительные компоненты, как правило, содержат ненасыщенные двойные связи, рвущиеся при поглощении энергии фотонов.